In our approach, a directed acyclic graph of CUDA and MPI operations defines the design space for the program. Monte-Carlo tree search discovers regions of the design space that have large impact on the program's performance. A sequence-to-vector transformation defines features for each explored implementation, and each implementation is assigned a class label according to its relative performance. A decision tree is trained on the features and labels to produce design rules for each class; these rules can be used by systems experts to guide their implementations. We demonstrate our strategy using a key kernel from scientific computing --- sparse-matrix vector multiplication --- on a platform with multiple MPI ranks and GPU streams.