
KokkosComm: Communication Layer for
Distributed Kokkos Applications

Gabriel Dos Santos1,2(�), Nicole Avans3,4, Cédric Chevalier1,2, Hugo
Taboada1,2, Carl W. Pearson3, Jan Ciesko3, Stephen L. Olivier3, and Marc

Pérache1,2

1 CEA, DAM, DIF, F-91297 Arpajon, France
{gabriel.dossantos,cedric.chevalier,hugo.taboada,marc.perache}@cea.fr

2 Université Paris-Saclay, LIHPC, France
3 Sandia National Laboratories, Albuquerque, NM, USA

{cnavans,jciesko,slolivi,cwpears}@sandia.gov
4 Tennessee Technological University, Cookeville, TN, USA

Abstract. The Kokkos C++ Performance Portability Programming
Ecosystem provides multi-dimensional data structures, concurrency, and
algorithms to support shared-memory heterogeneous programming on
modern HPC architectures.
HPC applications that use Kokkos for intra-node parallelism typically
rely on MPI to distribute their code across multiple nodes. For this kind
of distributed application, programmers have to implement the logic to
exchange Kokkos Views using MPI. In this short-paper, we introduce
KokkosComm: an experimental, zero-overhead interface built on top of
standard message-passing libraries. KokkosComm unifies existing prac-
tices by offering a streamlined API for exchanging first-class Kokkos
objects within modern C++ applications.

Keywords: Kokkos · MPI · C++ · Heterogeneous Programming · High
Performance Computing

1 Introduction

The Kokkos C++ Performance Portability Programming Ecosystem [5] is a set of
libraries and a programming model providing shared-memory parallelism across
CPU and GPU architectures. Kokkos’ design philosophy is to offer simple core
primitives (parallel_for, parallel_reduce and parallel_scan) that let users
express parallel computations in a portable way with regards to the target hard-
ware. It also introduces opaque data structures that model where data is stored
and how it is laid out in memory. Expressing algorithms using Kokkos’ primitives
and data structures ensures performance portability across various hardware ar-
chitectures. Moreover, the minimal nature of Kokkos’ API discourages esoteric
code patterns and may enable optimizations that could not be achieved in the
general case, further helping to improve performance.

One of Kokkos’s primary data structures is the View: a multi-dimensional
array. Views may be sliced into subviews, potentially implying accessing data



2 G. Dos Santos et al.

elements not contiguous in memory. Exchanging Views in a distributed appli-
cation implies different possible communication strategies. For instance, a non-
contiguous View may be passed as multiple smaller, contiguous messages, or it
may also be packed as a single, larger message.

Kokkos does not provide primitives for distributing computations across mul-
tiple nodes. To scale Kokkos applications, programmers must rely on message-
passing frameworks such as MPI and write the interfaces for communicating
Kokkos Views through these libraries. Currently, these application-specific wrap-
pers are not unified across the Kokkos ecosystem, which leads to unnecessary
code duplication.

Efforts like Teuchos [3] MPI, part of the Trilinos [4] project (from which
Kokkos also stems), have tried providing abstractions over MPI but did not fo-
cus on the particularities of Kokkos objects. Attempts to integrate first-class
support for Kokkos Views, as seen in ExaMPI[2] — a non-standard C++-based
MPI implementation — have paved the way for more seamless interactions be-
tween these frameworks by integrating support for transferring Views directly
into the ExaMPI implementation. However, the need for a unified, efficient ap-
proach based on standard MPI implementations persists, driving the exploration
of new solutions to enhance performance portability in HPC applications based
on Kokkos.

This short-paper introduces KokkosComm, a message-passing layer that sim-
plifies building efficient, distributed Kokkos applications, seeking to address the
following points:

1. Make Kokkos + MPI interoperability less error-prone by helping manage
Kokkos parallel executions and MPI non-blocking operations;

2. Automatically choose the appropriate method for exchanging Views (non-
contiguous data, non-GPU-aware MPI implementation, etc.);

3. Develop and evaluate performance-portable communication interfaces using
the ecosystem developed by the points above and implemented using a vari-
ety of underlying communication libraries.

2 KokkosComm: toward a unified Kokkos +
Message-Passing wrapper

Currently, application developers that rely on Kokkos and message-passing must
implement bindings to manage their interaction themselves, which involves han-
dling non-GPU-aware MPI implementations (e.g., when the data to communi-
cate resides in a device’s memory) and how to manage non-contiguous data (e.g.,
when exchanging a slice of a multi-dimensional View).

The primary goal of KokkosComm is to ease the use of explicit message-
passing communications for Kokkos users. KokkosComm is aiming at being



KokkosComm 3

performance-portable. For example, it automatically handles GPU and non-
GPU-aware MPI implementations. It also provides efficient implementations of
communication patterns that require special handling, such as exchanging non-
contiguous Views. To this end, we follow Kokkos’ design philosophy and focus
on providing reliable core primitives to enable performance portability in dis-
tributed computing. We aim to unify existing practices as they exist in wrap-
pers for current Kokkos + MPI applications and leverage optimization enabled
by C++ meta-programming techniques and Kokkos Views’ compile-time infor-
mation (i.e., memory space and layout). Furthermore, the minimal API design
promotes extending support for other MPI-like libraries, such as NCCL or other
message-passing frameworks, in the future.

The KokkosComm project primarily focuses on MPI integration. At its core,
we introduce an API that balances simplicity and functionality. By maintain-
ing a minimal design philosophy, KokkosComm aims to reduce programming
complexity while offering compelling support for distributed communications
in Kokkos-based HPC environments. We implement a reduced subset of MPI’s
point-to-point and collective functions, focusing on non-blocking operations. An-
other vital aspect of this effort is ensuring direct interoperability when interact-
ing with standard MPI objects (e.g., communicators or requests). It guarantees
that KokkosComm is easy to integrate into applications that already use MPI
or that are not purely Kokkos-based (e.g., that call external libraries expecting
raw MPI objects).

Our effort also brings the opportunity to think about distributed communi-
cation semantics thoroughly. It lets us ensure that the proposed API accurately
reflects and efficiently handles the nuances of inter-node data transfers within
the context of heterogeneous computing. For instance, our high-level approach
ensures we uphold the semantics of Kokkos and the various message-passing li-
braries we seek to support. Currently, an effort within the project tries to bring
support for NVIDIA’s NCCL usable through the same core API as we provide
for MPI.

This dual abstraction and direct integration approach positions KokkosComm
as a versatile solution that can adapt to evolving HPC communication needs
while providing immediate, practical benefits to current MPI-based Kokkos ap-
plications.

3 Future work

The development of KokkosComm opens up exciting avenues for future research
and innovation in message-passing frameworks for C++. One promising direction
is the potential to leverage this work as a springboard for designing MPI-C++
extensions inspired by projects like ExaMPI. This greenfield effort could rely
on novel language features of the latest C++ standards, aligning the API more
closely with the evolving standards and best practices.



4 G. Dos Santos et al.

For instance, the upcoming ISO C++26 standard will introduce a senders/
receivers model through std::execution[1]. This asynchronous programming
paradigm could help us rethink how distributed MPI communications are written
in C++. Integrating these concepts into an MPI-C++ interface could lead to
more expressive and efficient ways of describing complex communication patterns
and data dependencies in distributed applications.

Another area of focus would be the integration of C++23’s std::mdspan[6],
a standard multi-dimensional array view (closely related to Kokkos Views). This
feature could provide a more natural and efficient way to represent and ma-
nipulate multi-dimensional data structures within the MPI context, potentially
simplifying code and improving performance.

We aim to enhance KokkosComm by pursuing these directions and contribute
to the broader evolution of message-passing-based programming models.

4 Conclusion

In this short-paper, we describe KokkosComm, an ongoing effort addressing the
challenges of integrating MPI within Kokkos-based applications for efficient dis-
tributed computing. We propose a simple, generic, high-level API that follows
Kokkos’ design philosophy and enables writing performance-portable communi-
cation patterns in C++ using mainstream message-passing frameworks such as
MPI or NCCL. Our approach also encourages collaborators to use the project’s
API as a research platform to integrate experimental distributed communica-
tion models into the Kokkos ecosystem. Application developers have started
replacing their hand-written MPI interoperability layers with KokkosComm,
which provides us with essential feedback for ongoing enhancements. Current
efforts adding support for other message-passing libraries — particularly for
NCCL/RCCL — through our high-level API will let Kokkos application devel-
opers trivially experiment with different communication back-ends.

Acknowledgments. This work was supported by the French Alternative Energies
and Atomic Energy Commission (CEA).

This work was supported by the Predictive Science Academic Alliance Program
(PSSAP), sponsored by the U.S. Department of Energy’s National Nuclear Security
Administration. Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525. s

References

1. Dominiak, M., Evtushenko, G., Baker, L., Radu Teodorescu, L., Howes, L., Shoop,
K., Garland, M., Niebler, E., Adelstein Lelbach, B.: P2300r10: std::execution.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2300r10.html
(2024)

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2300r10.html


KokkosComm 5

2. Suggs, E., Olivier, S., Ciesko, J., Skjellum, A.: View-aware Message Passing Through
the Integration of Kokkos and ExaMPI. In: Proceedings of the 30th European MPI
Users’ Group Meeting. EuroMPI ’23, Association for Computing Machinery, New
York, NY, USA (2023). https://doi.org/10.1145/3615318.3615321, https://doi.org/
10.1145/3615318.3615321

3. Teuchos Project Team, T.: The Teuchos Project Website, https://trilinos.github.
io/teuchos.html

4. Trilinos Project Team, T.: The Trilinos Project Website (2020), https://trilinos.
github.io

5. Trott, C., Berger-Vergiat, L., Poliakoff, D., Rajamanickam, S., Lebrun-Grandie, D.,
Madsen, J., Al Awar, N., Gligoric, M., Shipman, G., Womeldorff, G.: The Kokkos
EcoSystem: Comprehensive Performance Portability for High Performance Com-
puting. Computing in Science Engineering 23(5), 10–18 (2021). https://doi.org/10.
1109/MCSE.2021.3098509

6. Trott, C., Hollman, D.S., Lebrun-Grandie, D., Hoemmen, M., Sunderland, D., Ed-
wards, H.C., Adelstein Lelbach, B., Bianco, M., Sander, B., Ilopoulos, A., Michopou-
los, J., Liber, N.: P0009r18: MDSPAN. https://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2022/p0009r18.html (2022)

https://doi.org/10.1145/3615318.3615321
https://doi.org/10.1145/3615318.3615321
https://doi.org/10.1145/3615318.3615321
https://doi.org/10.1145/3615318.3615321
https://trilinos.github.io/teuchos.html
https://trilinos.github.io/teuchos.html
https://trilinos.github.io
https://trilinos.github.io
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/MCSE.2021.3098509
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html

	KokkosComm: Communication Layer for Distributed Kokkos Applications

