Sandia National Laboratories

# LATENCY AND BANDWIDTH MICROBENCHMARKS OF SIX US DEPARTMENT **OF ENERGY SYSTEMS IN THE TOP500**

**Carl Pearson<sup>1</sup>**, Christopher M. Siefert<sup>1</sup>, Stephen L. Olivier<sup>1</sup>, Andrey Prokopenko<sup>2</sup>, Timothy J. Fuller<sup>1</sup>, Jonathan J. Hu<sup>1</sup> <sup>1</sup> Sandia National Laboratories <sup>2</sup> Oak Ridge National Laboratory

# Problem

- Many applications are becoming performance-portable
- Acceptance testing results are not generally public
- Existing benchmark publications compare few systems
- Ad-hoc measurements fragmented through literature

## Contribution

• MPI latency, CPU/accelerator memory bandwidth, accelerator copy latency, and accelerator control latency benchmark results from six archetypal systems in the June 2023 Top500 [1] list

| System Name                                 | CPU           | GPU             |  |  |  |
|---------------------------------------------|---------------|-----------------|--|--|--|
| Frontier                                    | 111.97 ± 0.24 | 1,368.69 ± 0.11 |  |  |  |
| Summit                                      | 237.42 ± 0.24 | 805.30 ± 0.11   |  |  |  |
| Perlmutter                                  | 112.91 ± 0.26 | 1,396.47 ± 0.24 |  |  |  |
| Trinity                                     | 256.64 ± 2.11 | N/A             |  |  |  |
| Sawtooth                                    | 238.70 ± 8.39 | N/A             |  |  |  |
| Eagle                                       | 208.24 ± 0.92 | N/A             |  |  |  |
| Table 2. BabelStream COPV handwidths (GB/s) |               |                 |  |  |  |

 $\mathbf{U}_{\mathcal{U}} = \mathbf{U}_{\mathcal{U}} =$ 

# **MPI Latency**

- OSU benchmarks pt2pt
- Point-to-point MPI latency
- Hardware locality typically visible in latency measurements

SAND2023-09020D



Fig. 1: Example of communication domains (Tab. 2).

| System                                                                    | On-Soc          | GPU  ightarrow O |                   |  |  |  |  |
|---------------------------------------------------------------------------|-----------------|------------------|-------------------|--|--|--|--|
| Name                                                                      | Socket          | Node             | Socket            |  |  |  |  |
| Frontier                                                                  | 0.45 ± 0.01     | N/A              | N/A               |  |  |  |  |
| Summit                                                                    | 0.35 ± 0.08     | $0.86 \pm 0.00$  | $18.2 \pm 0.22^2$ |  |  |  |  |
| Perlmutter                                                                | $0.46 \pm 0.06$ | $1.11 \pm 0.04$  | N/A               |  |  |  |  |
| Trinity                                                                   | 0.67 ± 0.01     | 0.99 ± 0.01      | N/A               |  |  |  |  |
| Sawtooth                                                                  | 0.48 ±          | N/A              |                   |  |  |  |  |
| Eagle                                                                     | $0.17 \pm 0.00$ | 0.38 ± 0.01      | N/A               |  |  |  |  |
| Table 3. MPI latencies. Column subbeadings indicate the communication don |                 |                  |                   |  |  |  |  |

These two measurements are the same. <sup>2</sup> Refers to GPUs attached to the same POWER9 CPU.



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725

by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.



**STREAM COPY Bandwidth** 

- BabelStream's omp-stream, hip-
- stream, and cuda-stream benchmarks Single-socket systems feature lower
- aggregate CPU bandwidth Trinity, Sawtooth, and Eagle do not
- have accelerators

| ystem<br>Vame                                                                                    | Top500<br>Rank | Loc.  | CPU                | Accelerator | CPU<br>Compiler | GPU<br>Compiler | MPI                            |
|--------------------------------------------------------------------------------------------------|----------------|-------|--------------------|-------------|-----------------|-----------------|--------------------------------|
| rontier                                                                                          | 1              | ORNL  | AMD Zen 3          | AMD MI250X  | hipcc           | 5.3.0           | cray-mpich/8.1.23              |
| ummit                                                                                            | 5              | ORNL  | IBM POWER9         | NVIDIA V100 | xl/16.1.1-10    | nvcc 11.0.3     | spectrum-mpi/10.4.0.3-20210112 |
| Imutter <sup>1</sup>                                                                             | 8              | NERSC | AMD Zen 3          | NVIDIA A100 | gcc/11.2.0      | nvcc 11.7.64    | cray-mpich/8.1.25              |
| Trinity                                                                                          | 29             | LANL  | Intel KNL          |             | intel/2021.5.0  |                 | cray-mpich/7.7.20              |
| wtooth                                                                                           | 109            | INL   | Intel Cascade Lake |             | intel/19.0.5    |                 | intel-mpi/2019.0.117           |
| Eagle                                                                                            | 127            | NREL  | Intel Skylake      |             | gcc/8.4.0       |                 | openmpi/4.1.0                  |
| Table 1: Summary of representative DOE systems in the June 2023 Top500. <sup>1</sup> PrgEnv-gnu. |                |       |                    |             |                 |                 |                                |

## 



# **Accelerator Intranode Bandwidth and Latencies**

- Comm|Scope's MemcpyAsync, DeviceSynchronize, and kernel benchmarks
- Interconnect heterogeneity on Frontier and Summit (Figs. 2, 3) have a significant impact in measured transfer bandwidths. Latencies are not affected.

| System                                                                            | Host/GP          | U (GB/s)     | GPU/GPU (GB/s) |              |              |  |  |
|-----------------------------------------------------------------------------------|------------------|--------------|----------------|--------------|--------------|--|--|
| Name                                                                              | Α                | В            | Α              | В            | C,D          |  |  |
| Frontier                                                                          | 26.70 ± 0.00     | N/A          | 50.90 ± 0.00   | 50.95 ± 0.00 | 36.95 ± 0.00 |  |  |
| Summit                                                                            | 47.91 ± 0.00     | 37.61 ± 0.03 | 34.17 ± 0.01   | 30.29 ± 0.21 | N/A          |  |  |
| Perlmutter                                                                        | $26.50 \pm 0.00$ | N/A          | 19.30 ± 0.05   | N/A          | N/A          |  |  |
| Table 4: Intranode transfer bandwidths (GB/s). Host/GPU is mean of host-to-device |                  |              |                |              |              |  |  |

and device-to-host

| System                                       | Kernel<br><i>(µs)</i> | Sync<br><i>(µs)</i> | Host/GPU<br><i>(µs)</i> | GPU → GPU <i>(μs)</i> |                  |              |              |
|----------------------------------------------|-----------------------|---------------------|-------------------------|-----------------------|------------------|--------------|--------------|
| Name                                         |                       |                     |                         | Α                     | В                | С            | D            |
| Frontier                                     | $1.50 \pm 0.00$       | $0.14 \pm 0.00$     | 13.03 ± 0.05            | 12.02 ± 0.05          | 12.56 ± 0.03     | 12.68 ± 0.02 | 12.02 ± 0.10 |
| Summit                                       | $4.7 \pm 0.00$        | $4.54 \pm 0.00$     | $7.70 \pm 0.03$         | 24.97 ± 0.15          | $27.44 \pm 0.14$ | N/A          | N/A          |
| Perlmutter                                   | 1.77 ± 0.01           | $4.24 \pm 0.01$     | $4.24 \pm 0.01$         | $14.74 \pm 0.41$      | N/A              | N/A          | N/A          |
| Table 5: GPU control and transfer latencies. |                       |                     |                         |                       |                  |              |              |

### References

[1] TOP500 June 2023. [Online]. Available: https://www.top500.org/lists/top500/2023/06/ [2] OSU micro-benchmarks. [Online]. Available: http://mvapich.cse.ohio-state.edu/benchmarks/ [3] C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong, and W.-M. Hwu, "Evaluating characteristics of CUDA communication primitives on high-bandwidth interconnects," in Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, 2019, pp. 209–218 [4] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, "Evaluating attainable memory bandwidth of parallel programming models via BabelStream," International Journal of Computational Science and Engineering, vol. 17, no. 3, pp. 247–262, 2018.

This research made use of Idaho National Laboratory computing resources which are supported by the This research used resources of the Los Alamos National Laboratory, supported Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517

by the U.S. Department of Energy under contract No. 89233218CNA000001

This research used resources of the National Energy Research Scientific Computing Center, which is supported This poster has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the U.S. Department of Energy.



# **Measurement Strategy**

- OSU MPI Microbenchmarks 7.1 [2]
- Comm|Scope 0.12.0 [3]
- BabelStream 4.0 [4]
- Default system environment + GPU/MPI enablement
- Mean and standard deviation of 100 samples



![](_page_0_Figure_58.jpeg)

![](_page_0_Picture_59.jpeg)

![](_page_0_Figure_61.jpeg)

![](_page_0_Figure_62.jpeg)

![](_page_0_Figure_63.jpeg)