
Node-Aware Stencil Communication for
Heterogeneous Supercomputers

Carl Pearson, Mert Hidayetoğlu, Mohammad Almasri, Omer Anjum, I-Hsin Chung∗,
Jinjun Xiong∗, and Wen-Mei W. Hwu

Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801
∗ IBM T. J. Watson Research, Yorktown Heights, NY 10563

Abstract—High-performance distributed computing systems
increasingly feature nodes that have multiple CPU sockets and
multiple GPUs. The communication bandwidth between these
components is non-uniform. Furthermore, these systems can
expose different communication capabilities between these com-
ponents. For communication-heavy applications, optimally using
these capabilities is challenging and essential for performance.
Bespoke codes with optimized communication may be non-
portable across run-time/software/hardware configurations, and
existing stencil frameworks neglect optimized communication.
This work presents node-aware approaches for automatic data
placement and communication implementation for 3D stencil
codes on multi-GPU nodes with non-homogeneous communica-
tion performance and capabilities. Benchmarking results in the
Summit system show that choices in placement can result in a
20% improvement in single-node exchange, and communication
specialization can yield a further 6x improvement in exchange
time in a single node, and a 16% improvement at 1536 GPUs.

Index Terms—stencil, CUDA, GPU, heterogeneous, MPI, com-
munication, topology, node

I. INTRODUCTION

Stencil computation is a fundamental formulation for solv-
ing differential equations using finite difference, finite volume,
and finite element methods, which are used widely in high
performance computing (HPC) applications such as simu-
lating fluid dynamics, magnetohydrodynamics (MHD), space
weather predictions, seismic wave propagation, and others.
Along with a discrete grid space, a “stencil” determines the
neighboring grid points required to update any grid point in
space. Stencils across applications vary in their type and order.
Two types of order-1 (which means one immediate neighbor
in each direction is used for calculating a grid point value)
3D stencils are shown in Fig. 1(a) and (b). Stencil in Fig. 1(a)
requires one neighbour point along the axis in all directions,
while in Fig. 1 (b), stencil also requires the neighbor points
along the diagonals in different planes.

Modeling phenomena with high spatial and/or temporal
resolution leads to enormous stencil grids. Current large-scale
CPU simulations use up to 1010 grid points and 105 CPUs [1],
[2], and are still orders of magnitude too small to capture
phenomena of interest in available time and energy budgets.
This has led to interest in using GPUs for stencil applications.

GPUs excel when there is limited data exchange, structured
data reuse, and massive parallelism. Stencils exhibit all of
these properties [3]. Once the stencil data is initialized on
the GPU, it remains there without further exchange with the

z­a
xis

x­axis

y­
ax

is

(a) (b)

Fig. 1: An illustration of 3D stencils (a) Neighbor grid points required
for updating the center (green) point are only along axis (b) Grid
points required are along the axis and diagonals in each plane.

host. The data-reuse between neighboring nodes is (relatively)
easy to leverage through shared memory and register queues
in GPU kernels, and the grid points can be updated in parallel.

For large-scale stencil applications, the domain data may be
much larger than a single GPU’s memory. We survey various
prior GPU and non-GPU stencil codes since 2015, and see
a range of 1-8 quantities, a typical stencil radius of 3, and
subdomains per GPU of 5123, with a total domain size of
around 1010 at most [3]–[6]. This motivates our selection of
domain size in a multi-GPU environment for our experiments.

Distributed stencil algorithms are usually implemented in
terms of separate subdomains, which require halo exchange
to update the grid points at the boundaries of the subdo-
mains. Fig. 2 shows an example stencil 2D domain, being
decomposed into four subdomains. Each subdomain has a
halo of width r, wide enough to cover all neighbors at
the boundary of the subdomain. Before the boundary grid
points can be updated, current data from the neighbor needs
to be transferred to each subdomain’s halo. Halo exchange
requires communication between GPUs within and/or across
the compute nodes. The number of neighbors with which a
GPU is required to communicate halos depends on the shape
and type of the stencil, the pattern used to divide the compute
domain among GPUs and nodes for parallel execution, and
the type of boundary conditions. In this work, we consider
periodic boundary conditions but the techniques are easily
applicable to other types of boundary conditions.

For example, the 3D stencil in Fig. 1(a) would require halos
to be exchanged along all the six faces of the compute sub-
domain, and hence six neighboring GPUs would be involved
in the halo communication, one for each face. The stencil in



Fig. 2: An example of a 2D domain, decomposed into four equal
subdomains, with three labeled halo transfers Ê Ë Ì that show
transfer of data from the interior of a region to the halo of a
neighboring region. There are more transfers than the ones shown.

Fig. 1 (b) has grid points not only along axis but also along
the diagonals. It would require communication not only with
six neighbors along the faces but also twelve neighbors along
the edges of the compute subdomain.

Emerging distributed HPC clusters feature nodes of multi-
socket CPU and multiple GPUs, with CUDA and MPI libraries
to exploit the hardware. These libraries are relatively low-level,
featuring fine-grained control of the underlying platform and
many options for communication and data allocation. Thus,
implementing efficient data placement and communication
strategies for large-scale stencil computations on such clusters
is a challenging task. The choice of hardware features and
library support are key to attain the best possible perfor-
mance. For example, GPUDirect can be used to directly
exchange data between GPUs rather that staging through the
CPU. Furthermore, CUDA-Aware MPI helps send messages in
pipelined manner and transparently uses GPUDirect whenever
is possible. Thus, significant development and tuning efforts
are required for a knowledgeable developer to select the best
data placement and communication strategies to achieve the
best possible performance.

In this paper, we propose a set of techniques to handle
these challenges for stencil applications, and implement those
techniques in a CUDA/C++ library. This library automatically
discovers system topology and the supported hardware and
system capabilities. Based on that information, it chooses
optimal data placement and communication strategy for 3D
stencil halo exchange. Specifically, this work contributes

• a structured three-phase solution to optimize GPU-GPU
stencil communication on heterogeneous clusters

• capability-based communication optimization based on
subdomain communication requirements and GPU com-
munication capabilities

• runtime node-aware data placement for stencil subdo-
mains using node-level topology information

• high intra-node communication performance regardless of
ranks per node

Additionally, we incorporate well-understood stencil com-
munication techniques:

• Hierarchical inter-node and intra-node domain partition-
ing to minimize communication

• Support for overlapping stencil computation and commu-
nication

The library supports flexible performance across any com-
bination of ranks and GPUs utilized in a single node, as well
as across nodes, and can be generalized for stencils of any
type and radius.

This paper is organized as follows: Section II presents some
background information on CUDA and MPI communication.
Section III explains the methodology of our communication
library. Section IV presents an experimental evaluation. Sec-
tion V includes a discussion of related work. Section VII
presents a discussion of future work, and concludes.

II. BACKGROUND

In this section, we give a brief background on MPI and
CUDA APIs for different modes of communication in a multi-
node and multi-GPU environment. This background is useful
for understanding how asynchronous MPI and CUDA calls are
performed to overlap communication and execution.

A. CUDA

Two kinds of GPU communication are used in this work:
GPU/CPU and GPU/GPU. For GPU/GPU communications,
we use cudaMemcpyPeerAsync. Peer access refers to the
ability of a GPU to directly access memory on another GPU
without involving the CPU, and must be explicitly enabled
by the application. For GPU/CPU communications, we use
cudaMemcpyAsync in conjunction with pinned memory
on the host. This allows overlapping of multiple CPU-GPU
communications as well as the highest bandwidth between the
CPU and the GPU.

These asynchronous CUDA operations are coordinated
through streams and events. A stream is a sequence of op-
eration that are executed in issue-order on the GPUs, and
events can be used to synchronize streams. We use multiple
CUDA streams to allow transfers to happen in parallel and
asynchronously.

B. MPI

We use MPI non-blocking MPI_Isend and MPI_Irecv
routines to exchange data between multiple MPI ranks. Non-
blocking routines enable a rank to have multiple pending
unrelated messages simultaneously.

C. CUDA and MPI

CUDA and MPI can be composed in a straightforward
way: for example, using CUDA to copy data from a source
GPU to a CPU, using MPI to copy that data to another
node, and using CUDA to copy that data to the destination
GPU. However, CUDA-Aware MPI allows GPU buffers to be
directly passed to MPI calls, instead of copying them to the
CPU first. There are two potential benefits to use CUDA-
Aware MPI. First, data may not need to be staged in the
CPU, improving latency and throughput. Secondly, underlying
acceleration technologies such as GPUDirect can be utilized.
We complete our evaluation with CUDA-aware MPI enabled
and disabled.



Another option is to make use of the cudaIpc* family of
functions. These functions allow events and device memory
pointers to be shared between processes, something is usually
disallowed by the virtual memory system. They work by turn-
ing an event or a device pointer into an opaque object that can
be shared by some inter-process-communication mechanism
(MPI in this work), and then converted back into a valid event
or pointer in the destination address space. This means that two
processes can directly copy data between device buffers, or
two processes can use a shared event to synchronize streams.
CudaIPC* is used in the COLOCATEDMEMCPY exchange
strategy in Section III.

III. METHOD

Before the stencil application begins, information about the
system and stencil domain is used to optimize communication.
This work addresses the challenge of communication schedul-
ing with a three-phase setup process:

• Partitioning: decomposing the stencil domain into subdo-
mains while minimizing required data exchange.

• Placement: placing the stencil data according to the
communication performance promised by the underlying
platform.

• Specialization: choosing the communication strategy that
best realizes the promised performance.

After setup is complete, halos can be exchanged on demand
by re-using the decisions made during setup.

A. Setup: Partitioning

Decompose the domain into one subdomain per GPU that
minimizes surface-to-volume ratio. The intuition is to

Fig. 3: Four example partitions of the same 2D domain: 2×2, 4×1,
3×3, and 9×1. The subdomain volume is shown as Vs, and the total
data volume as Vd. The stencil radius is r. Communication volume
is minimized when subdomain surface-to-volume ratio is minimized.

produce subdomains with a small surface-to-volume ratio: this
allows largest amount of stencil computation (the volume)
for the minimal amount of data exchange (the surface). For
example, Fig. 3 shows four potential partitions of the same
2D domain: 2×2, 4×1, 3×3, and 9×1, and summarizes the
total communication volume for each subdomain (Vs) and the
total (Vd). The total communication is minimized when the
subdomains have a minimal surface-to-volume ratio for a given
number of partitions (4 and 9 in this example).

Fig. 4: Example of decomposing a 4×2×24 domain among 12 nodes
with 4 GPUs. The domain is repeatedly partitioned among the longest
dimension by the prime factors of the number of nodes. Then, the
same process is applied for the number of GPUs per rank. The final
result is a subdomain with a 3D index in the rank space and a 3D
index in the GPU space. Ê shows in the initial domain. Ë shows the
partition of y by 3, the first prime factor of 12. Ì shows the partition
of y by 2, the second prime factor of 12. Í shows the partition of
x by 2, the final prime factor of 12. Î, Ï, and Ð repeat the process
for 4 GPUs.

Since off-node bandwidth is lower than inter-GPU band-
width, (Section IV), we adopt a hierarchical partition, first
to minimize communication between nodes, and then again
within nodes to minimize communication between GPUs. This
may not ultimately minimize inter-GPU communication, but
it does minimize the slower inter-node communication. The
same recursive inertial bisection [7] is used for both, where
the target number of partitions is number of nodes, and then
the number of GPUs per node.

We sort the prime factors of the target partition count largest
to smallest, and recursively divide the domain orthogonally
to its longest axis by the next prime factor. This provides
the largest number of opportunities to divide, ensuring the
best opportunity to make the resulting regions as cubical as
possible.

Fig. 4 shows an example decomposition of a 4×24×2
domain among 12 nodes of 4 GPUs. The large aspect ratio
is chosen to highlight the qualities of the decomposition
approach. The prime factors of 12 are 3, 2, and 2. The first
splits (Ë) is along the long y dimension by 3, then again
along the long y dimension by 2 (Ì), and finally along the x
dimension by 2 (Í), yielding a final index space of [2,6,1].
Each resulting subdomain is assigned an index in the resulting
3D space. Index [1,2,0] annotated, which is in x position
1, y position 2, and z position 0.

Each of those resulting subdomains is further decomposed
with the same approach according to the number of GPUs
on each node. Î highlights a single node-level subdomain,
but the same decomposition process is applied to all the other
node-level subdomains. In this example, Ï splits the long y
dimension by two, then the x dimension by two (Ð) to generate
the subdomains for the four GPUs, which results in one
approximately-cubical subdomain per GPU. Each subdomain
has a system-level 3D index in the node space (which node-
level partition its in), and a 3D index in the GPU space (which
GPU-level partition it represents); the combination of node
and GPU index is unique. Subdomains exchange halos with



all neighbors in this combined index space.

B. Setup: Data Placement

The second phase is to assign each subdomain to a
GPU to maximize use of the available communication
bandwidth. The shape and adjacency of subdomains controls
the amount of data exchanged between them, so not all
subdomains on a node exchange the same amount of data.
Fig. 5 shows an example four subdomains, each of size
M ×N ×P . Subdomain [0,0,0] transfer the M ×N -sized
face with [0,1,0], but an M×P -sized face with [1,0,0].

Fig. 5: Example of placing subdomains onto GPUs in a node. The
communication volume between subdomains is determined by their
index and shape. Those pairwise volumes are represented in a flow
matrix w. Likewise, each GPU has a theoretical communication
bandwidth to each other GPU. The reciprocal bandwidth is used as
a distance matrix d. w and d are used in a quadratic assignment
problem to place subdomains optimally on GPUs.

Subdomain placement is modeled as a quadratic assign-
ment problem (QAP) The quadratic assignment problem is
concerned with assigning a set of n facilities to n locations,
according to the flow between the facilities and the distance
between the locations, with the goal of placing facilities with
high flow close to one another. This is analogous to placing
subdomains with high exchange volume on GPUs that have
high communication bandwidth. The assignment is a bijection
f between facilities and locations. With real-valued square
matrix w representing the flow between facility i, j d the
distance between location i, j, and QAP minimizes the cost
function ∑

i,j<n

wi,jdf(i),f(j)

the sum of the flow-distance products under f .
We model the flow matrix as the required exchange volume

between subdomains, and the distance matrix as the element-
wise reciprocal of a matrix which captures the bandwidth of
GPUs i and j in di,j . Fig. 5 The CUDA driver provides the
Nvidia Management Library libnvidia-ml, which can be
used to infer the connection and bandwidth between GPUs on
a system The quadratic assignment problem is NP-hard. In this
work, we simply check all possible subdomain-GPU mappings
on each node. Since the number of GPUs in a node is typically
small, the cost of exhaustively searching all combinations is
acceptable.

C. Setup: Capability Specialization

In Section III-B, subdomains were assigned to GPUs to
best match the theoretical bandwidth. Prior work has shown
that the achievable GPU-GPU transfer bandwidth depends on
the communication method [8], not just the node topology.
In this section, we describe the final phase, where GPU-GPU
exchange is implemented in terms of these communication
methods.

In general, the exchange operation consists of taking the
(possibly) non-contiguous halo region from the interior of the
source subdomain, packing it into a contiguous buffer, sending
that buffer to the destination GPU, and unpacking that buffer
into the appropriate exterior of the destination subdomain.
Fig. 6 shows an example of a pack operation on a 3D region.
In this example, we consider an XYZ storage order, yielding a
non-continguous storage for the 3D region shown. The result
of the pack operation is to copy that data into a contiguous
buffer.

Fig. 6: Example of packing for a 3D region. In general, the linear
storage order of the subdomain in memory causes the elements of
the 3D region to be strided. The pack operation places only those
elements in a dense buffer with some predetermined order.

In order to support high-performance exchanges in a variety
of scenarios, we consider five GPU-GPU transfer methods.
All methods are asynchronous, allowing them to be freely
overlapped, even within a single process.

KERNEL (Fig. 7a): This method applies when a subdomain
has a self-exchange. This occurs when the entire decomposi-
tion dimension has extent 1 in any direction, and there are
periodic boundary conditions: the decomposition is only 1
subdomain wide, so the subdomain is on both the positive
and negative boundary of that dimension. This method uses a
CUDA kernel launched on the GPU to do an exchange within
GPU memory. One kernel is launched per direction vector that
needs to be exchanged. Since there is no packing or unpacking,
this method is the lowest-overhead exchange. Each GPU uses
its own stream to allow operations to overlap with other types
of exchanges.

PEERMEMCPY (Fig. 7a): This method applies when two
subdomains are in the same process, and the corresponding
GPUs have peer access (Section II). A CUDA kernel on the
source GPU (Ê) packs the non-contiguous 3D region into a
buffer on the device. Ë uses cudaMemcpyPeerAsync to
copy packed data to a buffer on the destination device. Ì uses
a kernel on the destination GPU to unpack the buffer into the



(a) The KERNEL (left) and PEERMEMCPY (right) exchange method on a
subdomain. For KERNEL: Ê represents a kernel transferring a halo from the
interior to the exterior. For PEERMEMCPY: Ê pack the non-contiguous 3D
region into a buffer on the source GPU. Ë cudaMemcpyPeerAsync to
copy packed data to a buffer on the destination GPU. Ì unpack the buffer
into the halo of the destination subdomain.

(b) During application initalization, the source and destination subdomains
use the cudaIpc* interface to bypass MPI during following exchanges. Ê,
Ë, Ì show a cudaIpcMemHandle_t being sent through MPI from the
destination to the source subdomain, to provide the source subdomain with
a pointer that can be the target of a cudaMemcpy during future exchanges,
without invoking MPI to send data between ranks. Then, in each exchange,
the halo region is packed into a buffer on the source GPU (Í). The source
domain uses cudaMemcpyPeerAsync Î to send data directly between the
source and destination GPU, without MPI. Ï marks unpacking the buffer into
the halo region on the destination device.

Fig. 7: Summary of Kernel, PeerMemcpy, and ColocatedMemcpy
exchange methods.

exterior of the destination subdomain. Each GPU pair uses its
own stream.

COLOCATEDMEMCPY (Fig. 7b): When multiple MPI ranks
are co-located on a node, the virtual memory barrier between
processes prevents straightforward data transfer between ranks.
In general, when passing data between subdomains on differ-
ent ranks, we would default to either the CUDAAwareMPI or
Staged methods. However, when two ranks are on the same
node, MPI can be bypassed entirely during each exchange
through the cudaIpc* set of runtime APIs. Once, during the
setup phase, the destination uses cudaIpcGetMemHandle
to create an opaque handle (Ê), which it passes through
MPI to the source domain (Ë). The source domain can use
cudaIpcOpemMemHandle to convert this handle into a
device pointer that is valid in its address space (Ì). Then,
during the exchange, the usual process of packing (Í), cud-

(a) First, the halo region is packed into a buffer on the source device
(Ê). Then, MPI_Isend is used with CUDA-aware MPI to transfer the
buffer to the destination GPU (Ë). Finally, the buffer is unpacked into
the 3D region on the destination (Ì).

(b) The halo region is packed into a buffer on the source device (Ê).
That buffer is copied to pinned memory on the host (Ë). MPI is used
to transfer the buffer between ranks (Ì). The buffer is transferred (Í)
to the destination device and unpacked (Î).

Fig. 8: Summary of CUDAAwareMPI and Staged exchange methods.

aMemcpyAsync (Î), and unpacking (Ï) is used to send data
between ranks, without using MPI at all.

CUDAAWAREMPI (Fig. 8a): CUDA-Aware MPI allows
CUDA device pointers to be passed to the MPI_Send/Recv
family of functions (instead of only pointers to system mem-
ory). Therefore, as long as the MPI system is “CUDA-Aware”,
this regime can be used to pass data between any two GPUs.
Data is packed with a kernel (Ê) into a flat buffer, transferred
(Ë) to the destination device with MPI_Send/Recv, where it
is unpacked (Ì). This method is only supported when CUDA-
Aware MPI is supported on the execution platform.

STAGED (Fig. 8b): Any system with both CUDA and MPI
will support this method. First, the region is packed (Ê) into
a flat buffer on the source GPU. Then, that buffer is copied
(Ë) to a pinned buffer on the host with cudaMemcpyAsync.
MPI_Send/Recv is used to transfer the buffer to the des-
tination (Ì), where it is copied back ot the device (Í), and
finally, unpacked into the subdomain with a kernel (Î).

Every subdomain in a rank queries the placement informa-
tion (Section III-B) to determine where all of its neighboring
subdomains are, in terms of node index, GPU index, as well as
owning rank and CUDA device ID. With that information, peer
access between needed devices is enabled, if available. Then,
for each subdomain exchange, the first applicable method from
this section is selected. On our test platform, CUDA-Aware
MPI is always slower than staged, so it is never selected.



Fig. 9: An example timeline of overlapped exchange operations for a 5123 subdomain with four SP quantities on a single rank controlling
GPU 0 and GPU 2. Some data exchanges are contained within the rank, and some go to other ranks.

D. Async and Overlap

To achieve good communication performance, it is crucial to
overlap as many unrelated communication operations as possi-
ble. As described in Section II, both CUDA and MPI provide
asynchronous transfer operations: the cudaMemcpy*Async
and MPI_Isend/Irecv families respectively. When a sub-
domain exchange is only a sequence of CUDA operations
(as in the kernel, PeerMemcpy, and ColocatedMemcpy), the
asynchronous operations can be added to a stream, and all
executed whenever resources are available. When the subdo-
main exchange involves both CUDA and MPI operations, we
prevent serialization by implementing Sender and Reciever
objects as state machines.

After starting the pure-CUDA asynchronous exchanges, we
loop over all the state machines and check if each sequential
phase of their operation is done, and they are ready to proceed
to the next step. If so, they are moved to the next state. For
example, the staged Sender would have two states, one where
it is packing into the device buffer and copying to the host
(both operations in a CUDA stream), and then a following
state where it is using MPI_Isend to transfer the buffer to the
receiver. Once all stateful senders and receivers are complete,
we block on the truly asynchronous operations, and then the
exchange is considered complete.

Fig. 9 shows how operations are effectively overlapped. It
was recorded during a one-node exchange of 5123 subdomain
per GPU with four single-precision (SP) quantities between
two MPI ranks, each of which controlled two GPUs.

IV. RESULTS

A. Experimental Setup

The techniques described in this paper are implemented
in a CUDA/C++ header-only library located at https://github.
com/cwpearson/stencil. The repository also includes source
for the binaries and scripts used to generate the presented
performance.

Evaluation was carried out on the Summit [9] system at Oak
Ridge National Laboratory and Fig. 10 and Table I summarizes
the node.

Fig. 10: Summit node architecture and bandwidths between CPUs,
GPUs, and network interface card. GPUs in the same triad have more
bandwidth between them, affecting optimal data placement.

The experiments compare exchange performance with and
without CUDA-aware MPI. For the “remote” case, STAGED
communication occurs without CUDA-aware MPI, and CUD-
AAWAREMPI communication occurs with.

Exchange time without associated stencil computation is
reported. In each rank, MPI_Barrier is called, MPI_Wtime
is used to record the start time, then the exchange process is
executed, MPI_Wtime is used to record an end time. The
maximum wall time across all ranks is the reported time.

B. Data Placement Performance

Thanks to the domain partitioning optimization, each GPU’s
subdomain shape usually has an aspect ratio close to one.
When subdomains have small aspect ratios, all exchanges
between domains are similar, and data placement has no per-
formance effect. However, for a small number of subdomains
or very high-aspect-ratio domains, the resulting subdomains
can also have a high aspect ratio.

Fig. 11 shows an example of a compute domain
of 1440×1452×700, which produces 6 subdomains of
720×484×700. On a six subdomain node, the largest possible
ratio of dimensions for subdomains under most conditions
is 3/2. This example is chosen to closely match this worst-
case scenario. Under the node-aware placement, high-volume
halo exchanges between subdomains occur on high-bandwidth
links, and low-volume occurs on low-bandwidth links (see

https://github.com/cwpearson/stencil
https://github.com/cwpearson/stencil


CPU OS Kernel GPUs CUDA Driver MPI nvcc cc
22-core POWER9 RHEL 7.6 4.14.0-115.8.1.el7a.ppc64le V100-SXM2-16GB 418.67 Spectrum 10.3.0.1 10.1.168 g++ 4.8.5

TABLE I: Summit hardware summary

Fig. 11: Example of data placement exchanges for 6 subdomains of
720×484×700. For brevity, not all exchanges are shown, and z-axis is
omitted. Required exchanges and corresponding sizes are determined
by subdomain position. On the left, subdomain exchange volume is
well-matched to GPU interconnect bandwidth. On the right, the same
subdomains are poorly placed, resulting in high-volume exchanges on
low-bandwidth links. Consult Fig. 10 for GPU bandwidth.

Fig. 10 for bandwidth between GPUs). In a trivial placement,
where the subdomain id is linearized and assigned to GPUs,
some of the resulting high-volume exchanges occur on the
low-bandwidth SMP link across sockets. In this scenario,
node-aware data placement results in a 20% speedup thanks
to better utilization of hardware links.

C. Communication Specialization Performance

Fig. 12a shows the performance effect of communication
specialization on a single node, with a fixed amount of data
per GPU, and four SP quantities. Experimental configurations
are described with a string like “Xn/Xr/Xg/NNNN/ca”, where
Xn refers to X nodes, Xr refers to X ranks per node, Xg
refers to X GPUs per node, NNNN refers to the extent
of each dimension of the domain, and ca refers to CUDA-
aware, if used. “+remote” means only the STAGED or CU-
DAAWAREMPI exchange method is enabled. “+colo” means
remote and the COLOCATEDMEMCPY exchange are enabled.
“+peer” means the previous, plus PEERMEMCPY exchange is
enabled “+kernel” means the previous, plus KERNEL exchange
is enabled. Exchange times are the average of 30 exchanges
measured by MPI_Wtime. For multi-node cases, the node
with the longest exchange is used for the presented value.

Within each group of columns, additional communication
capabilities are enabled. When only the STAGED capability is
enabled, performance is at its worst, as all halo exchanges
are implemented through MPI_Isend. As we move from
one rank controlling all the GPUs to one rank controlling
each GPU, the performance improves as more processes are
recruited to participate in simultaneous memcopies underlying
the on-node MPI_Isend.

When the COLOCATEDMEMCPY exchange is enabled, per-
formance improves when more than one rank is on the node,

as exchanges between GPUs owned by those ranks no longer
invoke MPI. Even when compared to CUDA-Aware MPI, the
colocated exchange is faster. This is because it only does the
cudaIpc* exchange of buffers once during the setup phase
(Fig. 7b), while the CUDA-aware MPI has to do it every time.

When peer exchange is enabled, all exchanges within ranks
also no longer require MPI, and performance further improves.
Finally, enabling the kernel exchange seems to have no effect
on performance. This replaces self-exchanges through peer
copy with a single kernel call, but the on-node time is still
dominated by exchanges between GPUs. Ultimately, for a
single node, communication specialization has a large impact
on performance, yielding a 6x speedup over STAGED and a 2x
speedup over CUDAAWAREMPI.

Using CUDA-aware MPI provides some benefit, even in the
case of a single rank. Without CUDA-aware MPI, GPU data
is copied to the CPU, and then MPI is used to copy that data
to another buffer, before that data is returned to the GPU.
CUDA-aware MPI allows this entire process to be replaced
with a single GPU-GPU transfer, which is much faster than
baseline MPI’s CPU-CPU copy. In the case of six ranks per
node, it is three times faster, possibly due to better overlapping
of multiple CUDA transfers on node than MPI transfers. Using
our intra-node optimizations on top of CUDA-Aware MPI still
provides an additional 2x speedup, since our COLOCATED
method only does the inter-process communication during the
stencil setup.

Fig. 12b and Fig. 12c show the performance effect of
communication specialization on multiple nodes. Once com-
munication off-node occurs, the on-node only provides small
improvements, probably from replacing MPI calls with CUDA
calls, and allowing the MPI system to only communicate
between nodes. At 256 nodes (1536 GPUs), communication
specialization provides a 1.16× speedup.

D. Weak Scaling

Fig. 12b and Fig. 12c show exchange time scaled out to
multiple nodes, each with 6 ranks and 6 GPUs. Since the
automatic partition and placement attempts to provide good
performance for all domain shapes, we fix the domain shape
to a cube for these experiments. The total grid volume closely
matches 7503 points per GPU, while maintaining an overall
cube shape: it is computed as round(750×nGPUs

1
3 )3, where

nGPUs is the number of participating GPUs. Without CUDA-
aware MPI, the exchange time flattens out after 32 nodes, when
most nodes communicate with 26 distinct neighbors. As the
off-node communication dominates the performance, enabling
various on-node optimizations only provide a small benefit by
removing some on-node MPI interactions.

With CUDA-aware MPI, the performance degrades dra-
matically as more nodes are included, and intra-node op-



(a) (b) (c)

Fig. 12: Exchange time vs. total domain size, scaled with the number of GPUs. Each configuration is labeled with a string of the form
“Xn/Xr/Xg/NNNN/ca”. Xn refers to X nodes. Xr refers to X ranks per node. Xg refers to X gpus per node. NNNN refers to the extent of
each dimension of the domain. ca refers to CUDA-Aware, if enabled. (a) Exchange time on a single node with 1, 2, or 6 ranks. At 6 ranks,
specialization provides a 6x speedup over STAGED only, and a 2× speedup over CUDAAWAREMPI. (b) Exchange times without CUDA-aware
MPI, scaled to 256 nodes and 1536 GPUs. The “+kernel” time is annotated above each group. At 256 nodes, specialization provides a 1.16×
speedup over STAGED. Enabling CUDA-aware MPI degrades performance severely and prevents specialization optimizations from improving
it. (c) Exchange times with CUDA-aware MPI, scaled to 256 nodes and 1536 GPUs.

(a) Halo exchange time for a domain of 13633.

Fig. 13: Exchange time vs number of GPUs, for a fixed total
domain size. Each configuration is labeled with a string of the form
“Xn/Xr/Xg”. Xn refers to X nodes. Xr refers to X ranks per node. Xg
refers to X gpus per node.

timizations cease to have the expected effect. Profiling re-
veals that the MPI implementation uses the default CUDA
stream for most operations, which prevents asynchronous
MPI operations from being overlapped. It also frequently
calls cudaDeviceSynchronize, which prevents unrelated
CUDA operations from happening in parallel with MPI.

E. Strong Scaling

Fig. 13 shows strong scaling of the exchange performance.
The baseline is the largest domain with four SP quantities that
fist into a single node. The domain is distributed among up to
256 nodes (1536 GPUs) with 6 GPUs and 6 ranks per node.
The configurations are annotated the same way as the weak
scaling (Section IV-D).

As the stencil is distributed from 1-128 nodes, we see a
drop in total exchange time. This is because each node only
exchanges locally with its neighbors, and the communication
volume decreases as more nodes are included. For a small
number of nodes, the impact of the on-node capability opti-
mizations are more substantial, as the exchange time is not yet
dominated totally by MPI. Once we reach 32 nodes, capability
specialization stops improving performance. The amount of
data transferred becomes small enough that the additional
bandwidth offered by optimizations does not impact the overall

exchange time. At 256 nodes, we cease to see strong scaling
as the subdomains become very small. We do not evaluate a
similar scenario with CUDA-aware MPI, as it did not provide
performance improvement in weak scaling.

V. RELATED

To our knowledge, none of the prior work addresses all
the related challenges for an efficient communication across
GPUs in large clusters. It involves automatic discovery of
the cluster topology and hardware capabilities on a node, to
partition the domain, placing the partitions optimally across
GPUs and the use of right combination of CUDA and MPI
libraries to efficiently exploit the hardware. In this work, we
address all those challenges and further abstracts away the
implementation details for the ease of programmability. We
focus our discussion of related work on multi-GPU stencil
codes, node-aware GPU communication techniques, work that
provides some degree of automatic stencil code generation
for distributed memory (since it must therefore also handle
communication automatically).

A. Stencil Communication
[10] suggest a 1D grid decomposition to avoid communi-

cation in dimensions where data in halo regions is not stored
in contiguous locations. However, this limits scaling for large
domains as overall communication volume is not minimized.
Moreover, stencils with only axis-aligned grid points are
mentioned which further limits the application range.

[11] presents an efficient overlap between communication
and execution as a fundamental key to efficient execution.
However, this neglects how to achieve efficient communication
in the first place. They use the equivalent of our STAGED
communication method.

[3] presents a two-node multi-GPU 1D decomposition of
a stencil grid. They use the PEERMEMCPY exchange method
for on-node exchanges, and a collective multi-GPU pack for
off-node. Their implementation is hard-coded for the target
system and a single MPI rank per node.

[12] uses a similar prime-factor based 3D partitioning
strategy in their stencil code.



B. Node-Aware GPU Communication

[13]–[15] is a group of related works focusing on node-
aware topology for GPU-GPU communication. Like this work,
they compare a GPU communication matrix with a topology
matrix, for deciding which MPI ranks should be placed on
which GPUs. Our work differs in five main ways. First, they
restrict their consideration to one GPU per MPI process, so
do not consider optimizing the communication case within a
process or a GPU. Second, they do not consider the effect of
their work on multi-node executions. Third, we characterize
the placement as a quadratic assignment problem instead of
a graph embedding, though they are interchangeable in many
cases. Fourth, we recognize that GPU-GPU communication
defined at the algorithm level, not the MPI level, and so our
placement algorithm operates on stencil subdomains instead
of MPI ranks. Fifth, due to our domain-specific approach,
we are able to do subdomain placement without requiring an
initial profiling pass. [13] uses a 2D stencil microbenchmark
to evaluate the effect of node-aware placement on message
latency and bandwidth, and observe no effect. Our work shows
an effect for real stencil exchanges in practice.

Several works [16], [17] provide multi-GPU collective com-
munication patterns. Thanks to the semantics of the collectives,
these works are able to implement patterns that take advan-
tage of typical node topologies without adaptions to specific
platform characteristics.

C. DSLs, Frameworks, and Code Generation

[18] is a DSL framework which decomposes the grid in
3D and supports stencils with grid points also along diagonals.
To hide the communications latency the framework supports
overlap with the execution. This framework also implicitly
copies halos with non-unit stride through cudaAllocHost
to avoid multiple calls to cudaMemcpy. This is the same as
the packing we describe, except without a following explicit
transfer step to the host. [19] presents another DSL framework
which supports 3D decomposition of the compute domain.
They implement the equivalent of our STAGED exchange
method. In [20] once the domain is partitioned, sub-domains
are mapped to GPUs using blocking and circular configuration.
Blocking configurations first assign partitions to dual GPUs
on the same graphic card, while circular configuration assigns
partitions in an alternating fashion between the graphics cards.
This strategy touches on node-ware configurations, but does
not consider multi-GPU nodes or many node topologies. [21]
presents a framework for executing stencil codes on GPU
clusters with subdomains that are larger than GPU memory.
Their temporal blocking mechanism causes inter-node com-
munication to be implemented like our STAGED method. [22]
present a stencil application in high-level OpenCL program-
ming framework. It only considers a single node, and data is
exchanged between GPUs by first being staged through the
CPU. [23], [24] introduce a software framework for large-
scale stencils on GPUs with an emphasis on overlapping
communication with execution. [25] is a compiler which

generates stencil code for CPU-GPU clusters. It seems to
leverage the same communication techniques used in [11].

VI. FUTURE WORK

Currently, the communication methods require some amount
of GPU kernel execution to pack and unpack data. Espe-
cially on single-node exchanges, these operations can keep
the GPU occupied for a substantial part of the exchange
process as shown in Fig. 9. [18] implements GPU-to-CPU
packing through zero-copy memory. This may be faster than
our implementation in some circumstances.

There are also approaches for avoiding packing and unpack-
ing. The CUDA cudaMemcpy3D* and cudaMalloc3D*
routines to transfer and allocate 3D regions. Alteratively, halos
could be stored separately from the compute domain, andthe
library could provide a “smart pointer” to GPU kernels that
redirects each dereference to the right memory allocation.
This would create a performance penalty in the kernel, but
improve exchange time. Alternatively, devices with peer access
can implicitly access data remote inside GPU kernels, or the
allocation could be managed with unified memory. We could
use a single GPU kernel to transfer data between such devices,
or avoid copying data between same-rank GPUs in the first
place, improving overlap of computation and communication.

Figure 9 shows that the CPU time initiating transfers can
be substantial, especially if there are more GPUs. Consoli-
dating operations could improve overlap. Second, the current
implementation of the data placement algorithm is naive. [13]
suggests that a similar algorithm should have a negligible
impact on execution time when properly implemented.

[13] uses an empirical measurement of latency, bandwidth,
and distance between GPUs to inform the MPI rank placement.
We could investigate if empirical measurements provide better
results. Furthermore, we could extend this to include the
achieved bandwidth between GPUs for all specializations on-
node.

[3] packs all GPU halos on a single node into a single buffer
before exchanging with other nodes, to reduce the number of
messages and increase the message size. Fewer, larger MPI
messages tend to achieve better performance, but our messages
may already be few enough and large enough.

At an application level, [22] allows the user to trade off
halo exchange size with iterations between exchanges. Fewer,
larger exchanges cause fewer synchronization points, but also
grow super-linearly in required data size.

The general problem of task-placement and communication
optimization is considered by a variety of large-scale libraries
and frameworks including Zoltan [26] and Legion [27]. These
frameworks allow uses to run a variety of code to control
partitioning and placement. We will investigate integrating
these techniques into an existing system to evaluate on a wider
variety of scenarios.

VII. CONCLUSION

We present and evaluate a set of techniques for optimizing
3D stencil communication on heterogeneous supercomputers.



First, a hierarchical partitioning technique is used to minimize
required data exchange between nodes, and then between
GPUs. Second, node topology is used to inform data placement
regardless of MPI ranks per node and GPUs per rank, with up
to a 20% reduction in exchange time. Third, node GPU transfer
capabilities are used to optimize data exchange between GPUs
on a node, yielding a further 6x speedup of single-node
exchange over a naive transfer staged through the CPU, or
a 1.16x improvement in a 1536 GPU exchange on 256 nodes.
Prior works have tended to focus on single-GPU nodes, or ne-
glected the intra-node communication optimization. Important
open questions derived from this work include CUDA-aware
MPI performance, and system-level data placement among
nodes.

ACKNOWLEDGMENTS

This work is supported by IBM-ILLINOIS Center for
Cognitive Computing Systems Research (C3SR) - a research
collaboration as part of the IBM AI Horizon Network. This
work utilizes resources supported by the National Science
Foundation’s Major Research Instrumentation program, grant
#1725729, as well as the University of Illinois at Urbana-
Champaign. This work was supported in part by the Center
for Research on Intelligent Storage and Processing-in-memory
(CRISP), one of six centers of JUMP, a Semiconductor Re-
search Corporation program co-sponsored by DARPA. This
work was supported in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a
Semiconductor Research Corporation program co-sponsored
by DARPA. The authors would especially like to thank Dawei
Mu and Rakesh Nagi for supporting initial experiments and
providing valuable insight.

REFERENCES

[1] H. Hotta, M. Rempel, and T. Yokoyama, “High-resolution calculations of
the solar global convection with the reduced speed of sound technique.
I. the structure of the convection and the magnetic field without the
rotation,” The Astrophysical Journal, vol. 786, no. 1, p. 24, 2014.

[2] A. Beresnyak, “Spectra of strong magnetohydrodynamic turbulence from
high-resolution simulations,” The Astrophysical Journal Letters, vol.
784, no. 2, p. L20, 2014.

[3] O. Anjum, G. de Gonzalo Simon, M. Hidayetoglu, and W.-M. Hwu, “An
efficient GPU implementation technique for higher-order 3D stencils,”
in 2019 IEEE 21st International Conference on High Performance
Computing and Communications(HPCC). IEEE, 2019, pp. 552–561.

[4] J. Skála, F. Baruffa, J. Büchner, and M. Rampp, “The 3D MHD code
GOEMHD3 for astrophysical plasmas with large Reynolds numbers-
code description, verification, and computational performance,” Astron-
omy & Astrophysics, vol. 580, p. A48, 2015.

[5] J. Pekkilä, M. S. Väisälä, M. J. Käpylä, P. J. Käpylä, and O. Anjum,
“Methods for compressible fluid simulation on GPUs using high-order
finite differences,” Computer Physics Communications, vol. 217, pp. 11–
22, 2017.

[6] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka, “A
versatile software systolic execution model for GPU memory-bound
kernels,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–81.

[7] R. D. Williams, “Performance of dynamic load balancing algorithms for
unstructured mesh calculations,” Concurrency: Practice and experience,
vol. 3, no. 5, pp. 457–481, 1991.

[8] C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong,
and W.-M. Hwu, “Evaluating characteristics of CUDA communication
primitives on high-bandwidth interconnects,” in Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering,
2019, pp. 209–218.

[9] Summit documentation. [Online]. Available: https://docs.olcf.ornl.gov/
systems/summit user guide.html

[10] D. Jacobsen, J. Thibault, and I. Senocak, “An MPI-CUDA implementa-
tion for massively parallel incompressible flow computations on multi-
GPU clusters,” in 48th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition, 2010, p. 522.

[11] M. Sourouri, J. Langguth, F. Spiga, S. B. Baden, and X. Cai, “CPU+GPU
programming of stencil computations for resource-efficient use of GPU
clusters,” in 2015 IEEE 18th International Conference on Computational
Science and Engineering. IEEE, 2015, pp. 17–26.

[12] HPCG benchmark. [Online]. Available: https://www.hpcg-benchmark.
org/

[13] I. Faraji, S. H. Mirsadeghi, and A. Afsahi, “Exploiting heterogeneity
of communication channels for efficient gpu selection on multi-GPU
nodes,” Parallel Computing, vol. 68, pp. 3–16, 2017.

[14] S. H. Mirsadeghi, “Improving communication performance through
topology and congestion awareness in HPC systems,” Ph.D. dissertation,
PhD thesis, Queen’s University, Ontario, 2017.

[15] I. Faraji, “Improving communication performance in GPU-accelerated
HPC clusters,” Ph.D. dissertation, 2018.

[16] Nvidia collective communications library. [Online]. Available: https:
//github.com/NVIDIA/nccl

[17] gloo. [Online]. Available: hhttps://github.com/facebookincubator/gloo
[18] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: an

implicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2011, pp. 1–12.

[19] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, 2012, pp. 155–164.

[20] T. Lutz, C. Fensch, and M. Cole, “Partans: An autotuning framework
for stencil computation on multi-GPU systems,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 9, no. 4, pp. 1–24,
2013.

[21] T. Endo and G. Jin, “Software technologies coping with memory
hierarchy of GPGPU clusters for stencil computations,” in 2014 IEEE
International Conference on Cluster Computing (CLUSTER), Sep. 2014,
pp. 132–139.

[22] M. Steuwer, M. Haidl, S. Breuer, and S. Gorlatch, “High-level program-
ming of stencil computations on multi-GPU systems using the SkelCL
library,” Parallel Processing Letters, vol. 24, no. 03, p. 1441005, 2014.

[23] T. Shimokawabe, T. Aoki, and N. Onodera, “High-productivity frame-
work for large-scale GPU/CPU stencil applications,” Procedia Computer
Science, vol. 80, pp. 1646–1657, 2016.

[24] T. Shimokawabe, T. Endo, N. Onodera, and T. Aoki, “A stencil frame-
work to realize large-scale computations beyond device memory capacity
on GPU supercomputers,” in 2017 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2017, pp. 525–529.

[25] M. Sourouri, S. B. Baden, and X. Cai, “Panda: A compiler framework
for concurrent CPU-GPU execution of 3D stencil computations on
GPU-accelerated supercomputers,” International Journal of Parallel
Programming, vol. 45, no. 3, pp. 711–729, 2017.

[26] K. D. Devine, E. G. Boman, and G. Karypis, “Partitioning and load bal-
ancing for emerging parallel applications and architectures,” in Frontiers
of Scientific Computing, M. Heroux, A. Raghavan, and H. Simon, Eds.
Philadelphia: SIAM, 2006.

[27] S. Treichler, M. Bauer, and A. Aiken, “Language support for dynamic,
hierarchical data partitioning,” ACM SIGPLAN Notices, vol. 48, no. 10,
pp. 495–514, 2013.

https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://www.hpcg-benchmark.org/
https://www.hpcg-benchmark.org/
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
hhttps://github.com/facebookincubator/gloo

	Introduction
	Background
	CUDA
	MPI
	CUDA and MPI

	Method
	Setup: Partitioning
	Setup: Data Placement
	Setup: Capability Specialization
	Async and Overlap

	Results
	Experimental Setup
	Data Placement Performance
	Communication Specialization Performance
	Weak Scaling
	Strong Scaling

	Related
	Stencil Communication
	Node-Aware GPU Communication
	DSLs, Frameworks, and Code Generation

	Future Work
	Conclusion
	References

