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Motivation

● Regular computation, access, and structure reuse ➡ stencil on GPU
● High-resolution modeling ➡ Large stencils
● Limited GPU memory ➡ distributed stencils with communication
● Fast stencil codes ➡ larger impact of communication
● Heterogeneous nodes (“fat nodes”) ➡ how to do communication

● Contributions:
○ A three-phase solution for optimized stencil communication on heterogeneous clusters

○ Capability-based communication specialization

○ Runtime node-aware data placement
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Glossary
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Stencil Overview
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● Typically more than one quantity
○ problem-dependent

○ physical properties (pressure, temperature)

○ directional derivatives

● Each quantity’s halo is exchanged with 
corresponding quantity in other subdomains

Glossary
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Intuition

● Off-node communication is expensive ➡ minimize required, maximize injection 
bandwidth

○ “hierarchical decomposition”

○ multiple ranks per node

● On-node communication hardware ➡ assign subdomains to GPUs to maximize 
use of bandwidth

○ “node-aware placement”

● On-node bandwidth depends on communication method ➡ use best method to 
achieve hardware bandwidth

○ “capability-based specialization”

○ parallel, asynchronous exchanges
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Decomposition - Minimize Required Comm.
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Intuition: less halo-to-interior ratio means less communication
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Decomposition - Approach
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● Divide into n subdomains

● Generate sorted prime factors, largest  to 
smallest.

○ Evenly-sized subdomain require dividing by integers.

○ Prime factors is the largest number of integers that 

multiply to N

● Divide the longest dimension by prime factors
○ use smaller prime factors later to clean up

prime_factors

sort

N

sorted prime 
factors

next 
factor

divide longest 
dimension
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Hierarchical Decomposition
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Minimize Communication Out of Node Minimize communication between GPUs
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Communication In Fat Nodes

Different Bandwidths between GPUs
Not the same as theoretical [1]

X-bus: achieved 30 GB/s unidirectional
NVLink: achieved 42 GB/s unidirectional
NIC: achieved 12.5 GB/s unidirectional

Neighbor GPUs have higher bandwidth

[1] Pearson et al. Evaluating Characteristics of CUDA 

Communication Primitives on High-Bandwidth Interconnects. 

ACM/SPEC International Conference on Performance 

Engineering. 2019.
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Placement

How to place subdomains on GPUs to maximize bandwidth utilization?
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Quadratic Assignment Problem

n  facilities and n locations
w: weight matrix: wi,j amount of “flow” between i and j.
d: distance matrix: distance between i and j
f: bijection n -> n “assignment” of facilities to location

Minimize cost function: sum of products of weights and 
distances under f.

GPUs: locations
subdomains: facilities
w: required communication
d: GPU bandwidth
f: assignment of subdomains to GPUs
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Solving QAP

Allocating Facilities with CRAFT. Buffa, Armour, Vollman. 1962.

Start with some initial placement
while true:
  Check all possible location swaps
  Choose swap that lowers cost  the most
  if no better swap:
    break
n3 for n facilities (n swaps for n locations, roughly n iterations)
key to not recompute cost each time - each swap only changes a bit of the cost
matches exact solution for n < 6 in our case
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Example Placement
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Capability Specialization

Achieve best use of bandwidth, regardless of 
ranks/node and GPUs/rank

● “Staged”: works for any 2 GPUs anywhere
○ pack from device 3D region into device 1D buffer

○ copy from device 1D buffer to host 1D buffer

○ MPI_Send to other host 1D buffer

○ copy from host 1D buffer to device 1D buffer

○ unpack from device 1D buffer to device 3D buffer

Optimizations are node-aware shortcuts on top of this
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Pack and Unpack
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CUDA-Aware MPI
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Same as the staged, but MPI responsible for getting data between GPUs
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Colocated
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Exchange between different ranks on the same node
Different ranks are different processes with different address spaces
Use cudaIpc* to move a pointer between ranks, then cudaMemcpy*
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Peer- and Self-exchange
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Peer: Two GPUs in the same rank Self: Same GPU is on both sides of the domain
Only if decomposition has extent=1 in any direction 
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Overlap
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P: Pack a halo region into a GPU buffer
U: Unpack a GPU buffer into a halo region
T: Translate from compute domain into halo region on the same GPU
W    : Wait for a packed message from another rank
SPeer: Peer send between two GPUs on the same MPI rank
SMPI: Send to a GPU on a different rank using MPI

All operations are parallel and asynchronous
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1 Node (Summit)

An/Br/Cg/N

A nodes

B ranks per node

C GPUs per node

N: total domain size is N3

remote: staged or CUDA-Aware only

+colo: “remote” + colocated communicators

+peer: “+colo” + peer communicator

+kernel: “+peer” + self communicator
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6x

Specialization has a big impact in intra-node performance

More ranks = parallel MPI operations
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Weak Scaling (Summit)
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Exchange time stabilizes once most nodes have 26 neighbors
Specialization has a smaller impact on off-node performance (1.16x at 256 nodes)
CUDA-aware causes poor scaling

Non-CUDA-aware CUDA-aware
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cudaMemcpyPeerAync
same device

cudaMemcpyPeer
between devices
followed by cudaDeviceSynchronize

cudaMemcpyPeer
same device

Spectrum MPI 10.3.0.1 puts many device-device copies in default stream, and also calls 
cudaDeviceSynchronize(), which synchronizes other asynchronous operations
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Strong Scaling: 13633
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?

Per-node data decreases

Overhead + load imbalance
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Future Work: Adjust Partition by Bandwidth

Minimal surface area for subdomain is not optimal
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GPU 0 GPU 0

GPU 0 GPU 0

1 GB/s

10 GB/s

Hypothetical Node Square Subdomains Stretched Subdomains

n

n 10n
n/10

max(10n / 10GB/s, (n/10) / 1GB/s)
=
n / 10 GB/s

max(n / 10GB/s, n / 1GB/s)
=
n / 1 GB/s
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Future Work: All Pack Directions not Equal 
Pack / Unpack performance depends on strides

28

consider
warp = 8, 
4x4 block 

coalesced writes coalesced reads

partially-coalesced 
writes

partially-coalesced 
reads

unpack is 2-3x slower than pack

pack unpack
copy
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Future Work: Topology-Aware Placement

Extent QAP to n ~ 1k: need a better placement algorithm, SCOTCH or something?
No measurable locality on summit
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Future Work: Store Halos Separately

Pros: no more packing and unpacking

Const: smart-pointer in cuda kernel to 
redirect accesses to the right buffer

Requires evaluation on real kernels
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css-host-yz-20, 4 ranks, 1 GPU / rank, 71ff24, driver 440.33.01, CUDA 10.2, Ubuntu 18.04, kernel 4.14.0-74-generic, timeline_28038.nvvp

h2d

unpack

translate

streams

compute

poll
MPI_Isend MPI_Isend MPI_Irecv

MPI_Irecv

d2h

pack
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Takeaways so Far

● Use (at least) one rank per GPU to maximize MPI injection bandwidth
● Data placement was good for 20% performance for one node
● Communication specialization was good for 6x on one node

○ still 1.16x at 256 nodes - allows MPI to just do off-node

● CUDA-Aware MPI seems like a proof-of-concept right now
● Some opportunities to improve partitioning and placement according to node 

topology
● May be able to trade off kernel time with communication time by storing halos 

in a packed configuration

32



ECE ILLINOIS

Implementation - CUDA/C++ Header-only Library

https://github.com/cwpearson/stencil - not quite public yet

Fast stencil exchange for any configuration of CUDA + MPI

Tested on Summit and Hal

Support for any combination of quantity types (float, double)

● Still has a few loose ends:
○ Multi-radius stencils (improve communication performance)

○ Export to standard visualization formats

○ Checkpointing

○ Convenience functions for overlapping communication and computation
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Extra Slides
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Weak Scaling (Summit) - Detail
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Weak Scaling (Summit) - CUDA-Aware Detail
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Future Work: Placement Performance

● Naive implementation right now
● Same placement on all nodes -> 

only do it once, no need to 
broadcast full placement 
information
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Communication Architecture
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SubdomainSubdomainSubdomain

Placement

self
peer

colocated
remote

Rank PRank P-1

Communicators:
One group per subdomain
One self-communicator
Peer communicator per SD on same rank
Colocated communicator for each SD on 
same node
Remote communicator per SD on other 
node

Holds placement information for all 
subdomains:
convert subdomain index to node, rank, 
GPU, and vis-versa

One subdomain per GPU

Node N
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Future Work: Library Performance

Measure inter-node and intra-node tiny messages
Represents overhead
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Future Work: Bandwidth Measurements

● CUDA-Aware MPI Performance
● MPI Performance

○ On-node vs off-node

● Can’t rely on specs to get actual bandwidth
● Use these instead distance for placement?

41



ECE ILLINOIS

Future Work: Further Reduce MPI messages

Consolidate all messages to a remote node into a single buffer

Pros: fewer, larger MPI messages

Cons: Incurs intra-node messaging and synchronization overhead
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Future Work: System-level heterogeneity

Whether in compute performance and communication contention

Could apply a similar placement scheme, but use ^ as inputs

Overlap with dynamic load balancing techniques?
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