
Node-Aware Stencil Communication for Heterogeneous
Supercomputers
Feb 28 2020

Carl Pearson1, Mert Hidayetoglu1, Mohammad Almasri1, Omer Anjum1, I-Hsin Chung2, Jinjun Xiong2, Wen-Mei Hwu1

1 Electrical and Computer Engineering, University of Illinois Urbana-Champaign
2 IBM T.J. Watson Research, Yorktown Heights, NY

ECE ILLINOIS

Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University
of Illinois Urbana-Champaign

● (Multi-)GPU communication
● Accelerating irregular applications

cwpearson

cwpearson
pearson at illinois.edu
https://cwpearson.github.io

2

https://cwpearson.github.io

ECE ILLINOIS

Outline

● Motivation
● Stencils
● Decomposition
● Placement
● Specialization
● Results
● Future Directions

In submission: 2020 International Workshop on Automatic Performance Tuning
(iWAPT)

3

ECE ILLINOIS

Motivation

● Regular computation, access, and structure reuse ➡ stencil on GPU
● High-resolution modeling ➡ Large stencils
● Limited GPU memory ➡ distributed stencils with communication
● Fast stencil codes ➡ larger impact of communication
● Heterogeneous nodes (“fat nodes”) ➡ how to do communication

● Contributions:
○ A three-phase solution for optimized stencil communication on heterogeneous clusters

○ Capability-based communication specialization

○ Runtime node-aware data placement

4

ECE ILLINOIS

Glossary

5

“corner” “edge” “face”

ECE ILLINOIS

Stencil Overview

6

Domain

Subdomains

interior

halor

1
2

1

2

2

1 2

Required halo exchange depends on stencil complexity

r = 2

r = 1

ECE ILLINOIS

● Typically more than one quantity
○ problem-dependent

○ physical properties (pressure, temperature)

○ directional derivatives

● Each quantity’s halo is exchanged with
corresponding quantity in other subdomains

Glossary

7

ECE ILLINOIS

Intuition

● Off-node communication is expensive ➡ minimize required, maximize injection
bandwidth

○ “hierarchical decomposition”

○ multiple ranks per node

● On-node communication hardware ➡ assign subdomains to GPUs to maximize
use of bandwidth

○ “node-aware placement”

● On-node bandwidth depends on communication method ➡ use best method to
achieve hardware bandwidth

○ “capability-based specialization”

○ parallel, asynchronous exchanges

8

ECE ILLINOIS

Decomposition - Minimize Required Comm.

9

Intuition: less halo-to-interior ratio means less communication

ECE ILLINOIS

Decomposition - Approach

10

● Divide into n subdomains

● Generate sorted prime factors, largest to
smallest.

○ Evenly-sized subdomain require dividing by integers.

○ Prime factors is the largest number of integers that

multiply to N

● Divide the longest dimension by prime factors
○ use smaller prime factors later to clean up

prime_factors

sort

N

sorted prime
factors

next
factor

divide longest
dimension

ECE ILLINOIS

Hierarchical Decomposition

11

Minimize Communication Out of Node Minimize communication between GPUs

ECE ILLINOIS

Communication In Fat Nodes

Different Bandwidths between GPUs
Not the same as theoretical [1]

X-bus: achieved 30 GB/s unidirectional
NVLink: achieved 42 GB/s unidirectional
NIC: achieved 12.5 GB/s unidirectional

Neighbor GPUs have higher bandwidth

[1] Pearson et al. Evaluating Characteristics of CUDA

Communication Primitives on High-Bandwidth Interconnects.

ACM/SPEC International Conference on Performance

Engineering. 2019.

12

ECE ILLINOIS

Placement

How to place subdomains on GPUs to maximize bandwidth utilization?

13

ECE ILLINOIS

Quadratic Assignment Problem

n facilities and n locations
w: weight matrix: wi,j amount of “flow” between i and j.
d: distance matrix: distance between i and j
f: bijection n -> n “assignment” of facilities to location

Minimize cost function: sum of products of weights and
distances under f.

GPUs: locations
subdomains: facilities
w: required communication
d: GPU bandwidth
f: assignment of subdomains to GPUs

14

ECE ILLINOIS

Solving QAP

Allocating Facilities with CRAFT. Buffa, Armour, Vollman. 1962.

Start with some initial placement
while true:
 Check all possible location swaps
 Choose swap that lowers cost the most
 if no better swap:
 break
n3 for n facilities (n swaps for n locations, roughly n iterations)
key to not recompute cost each time - each swap only changes a bit of the cost
matches exact solution for n < 6 in our case

15

ECE ILLINOIS

Example Placement

16

[0, 0, 0]

[0, 1, 0]

[0, 2, 0] [1, 2, 0]

[1, 1, 0]

[1, 0, 0]

[0, 0, 0]

[1, 0, 0]

[0, 1, 0] [1, 2, 0]

[0, 2, 0]

[1, 1, 0]

↓vol / ↓bw
↓vol / ↑bw

↑vol / ↓bw
↑vol / ↑bw

Node-Aware Placement Trivial Placement

gpu 0

gpu 1

gpu 2 gpu 5

gpu 4

gpu 3

gpu 1

gpu 2 gpu 5

gpu 4

gpu 0 gpu 3

ECE ILLINOIS

Capability Specialization

Achieve best use of bandwidth, regardless of
ranks/node and GPUs/rank

● “Staged”: works for any 2 GPUs anywhere
○ pack from device 3D region into device 1D buffer

○ copy from device 1D buffer to host 1D buffer

○ MPI_Send to other host 1D buffer

○ copy from host 1D buffer to device 1D buffer

○ unpack from device 1D buffer to device 3D buffer

Optimizations are node-aware shortcuts on top of this

17

ECE ILLINOIS

Pack and Unpack

18

ECE ILLINOIS

CUDA-Aware MPI

19

Same as the staged, but MPI responsible for getting data between GPUs

ECE ILLINOIS

Colocated

20

Exchange between different ranks on the same node
Different ranks are different processes with different address spaces
Use cudaIpc* to move a pointer between ranks, then cudaMemcpy*

ECE ILLINOIS

Peer- and Self-exchange

21

Peer: Two GPUs in the same rank Self: Same GPU is on both sides of the domain
Only if decomposition has extent=1 in any direction

ECE ILLINOIS

Overlap

22

U

SPeer: GPU 0 to GPU 2

SMPI

SMPIP

P

P

U

P SPeer: GPU 2 to GPU 0

P SMPI

P SMPI

T T

T T

another rank

another rank

W

another rank

another rank

t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0 t = 1.9

GPU 0

GPU 2

CPU CPU Time

U

U

U
U

Rank A
Timeline (ms)

W

W

W

P: Pack a halo region into a GPU buffer
U: Unpack a GPU buffer into a halo region
T: Translate from compute domain into halo region on the same GPU
W : Wait for a packed message from another rank
SPeer: Peer send between two GPUs on the same MPI rank
SMPI: Send to a GPU on a different rank using MPI

All operations are parallel and asynchronous

ECE ILLINOIS

1 Node (Summit)

An/Br/Cg/N

A nodes

B ranks per node

C GPUs per node

N: total domain size is N3

remote: staged or CUDA-Aware only

+colo: “remote” + colocated communicators

+peer: “+colo” + peer communicator

+kernel: “+peer” + self communicator

23

6x

Specialization has a big impact in intra-node performance

More ranks = parallel MPI operations

ECE ILLINOIS

Weak Scaling (Summit)

24

Exchange time stabilizes once most nodes have 26 neighbors
Specialization has a smaller impact on off-node performance (1.16x at 256 nodes)
CUDA-aware causes poor scaling

Non-CUDA-aware CUDA-aware

ECE ILLINOIS 25

cudaMemcpyPeerAync
same device

cudaMemcpyPeer
between devices
followed by cudaDeviceSynchronize

cudaMemcpyPeer
same device

Spectrum MPI 10.3.0.1 puts many device-device copies in default stream, and also calls
cudaDeviceSynchronize(), which synchronizes other asynchronous operations

ECE ILLINOIS

Strong Scaling: 13633

26

?

Per-node data decreases

Overhead + load imbalance

ECE ILLINOIS

Future Work: Adjust Partition by Bandwidth

Minimal surface area for subdomain is not optimal

27

GPU 0 GPU 0

GPU 0 GPU 0

1 GB/s

10 GB/s

Hypothetical Node Square Subdomains Stretched Subdomains

n

n 10n
n/10

max(10n / 10GB/s, (n/10) / 1GB/s)
=
n / 10 GB/s

max(n / 10GB/s, n / 1GB/s)
=
n / 1 GB/s

ECE ILLINOIS

Future Work: All Pack Directions not Equal
Pack / Unpack performance depends on strides

28

consider
warp = 8,
4x4 block

coalesced writes coalesced reads

partially-coalesced
writes

partially-coalesced
reads

unpack is 2-3x slower than pack

pack unpack
copy

ECE ILLINOIS

Future Work: Topology-Aware Placement

Extent QAP to n ~ 1k: need a better placement algorithm, SCOTCH or something?
No measurable locality on summit

29

ECE ILLINOIS

Future Work: Store Halos Separately

Pros: no more packing and unpacking

Const: smart-pointer in cuda kernel to
redirect accesses to the right buffer

Requires evaluation on real kernels

30

ECE ILLINOIS 31

css-host-yz-20, 4 ranks, 1 GPU / rank, 71ff24, driver 440.33.01, CUDA 10.2, Ubuntu 18.04, kernel 4.14.0-74-generic, timeline_28038.nvvp

h2d

unpack

translate

streams

compute

poll
MPI_Isend MPI_Isend MPI_Irecv

MPI_Irecv

d2h

pack

ECE ILLINOIS

Takeaways so Far

● Use (at least) one rank per GPU to maximize MPI injection bandwidth
● Data placement was good for 20% performance for one node
● Communication specialization was good for 6x on one node

○ still 1.16x at 256 nodes - allows MPI to just do off-node

● CUDA-Aware MPI seems like a proof-of-concept right now
● Some opportunities to improve partitioning and placement according to node

topology
● May be able to trade off kernel time with communication time by storing halos

in a packed configuration

32

ECE ILLINOIS

Implementation - CUDA/C++ Header-only Library

https://github.com/cwpearson/stencil - not quite public yet

Fast stencil exchange for any configuration of CUDA + MPI

Tested on Summit and Hal

Support for any combination of quantity types (float, double)

● Still has a few loose ends:
○ Multi-radius stencils (improve communication performance)

○ Export to standard visualization formats

○ Checkpointing

○ Convenience functions for overlapping communication and computation

33

https://github.com/cwpearson/stencil

ECE ILLINOIS

Thank you - Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University
of Illinois Urbana-Champaign

● (Multi-)GPU communication
● Accelerating irregular applications

cwpearson

cwpearson
pearson at illinois.edu
https://cwpearson.github.io

34

https://cwpearson.github.io

ECE ILLINOIS

Extra Slides

35

ECE ILLINOIS

Weak Scaling (Summit) - Detail

36

ECE ILLINOIS

Weak Scaling (Summit) - CUDA-Aware Detail

37

ECE ILLINOIS

Future Work: Placement Performance

● Naive implementation right now
● Same placement on all nodes ->

only do it once, no need to
broadcast full placement
information

38

ECE ILLINOIS

Communication Architecture

39

SubdomainSubdomainSubdomain

Placement

self
peer

colocated
remote

Rank PRank P-1

Communicators:
One group per subdomain
One self-communicator
Peer communicator per SD on same rank
Colocated communicator for each SD on
same node
Remote communicator per SD on other
node

Holds placement information for all
subdomains:
convert subdomain index to node, rank,
GPU, and vis-versa

One subdomain per GPU

Node N

ECE ILLINOIS

Future Work: Library Performance

Measure inter-node and intra-node tiny messages
Represents overhead

40

ECE ILLINOIS

Future Work: Bandwidth Measurements

● CUDA-Aware MPI Performance
● MPI Performance

○ On-node vs off-node

● Can’t rely on specs to get actual bandwidth
● Use these instead distance for placement?

41

ECE ILLINOIS

Future Work: Further Reduce MPI messages

Consolidate all messages to a remote node into a single buffer

Pros: fewer, larger MPI messages

Cons: Incurs intra-node messaging and synchronization overhead

42

ECE ILLINOIS

Future Work: System-level heterogeneity

Whether in compute performance and communication contention

Could apply a similar placement scheme, but use ^ as inputs

Overlap with dynamic load balancing techniques?

43

