Update on K-truss Decomposition on GPU

Mohammad Almasri!, Omer Anjum?, Carl Pearson', Zaid Qureshi?, Vikram S. Mailthody', Rakesh Nagi3, Jinjun Xiong?,
Wen-mei Hwu'

TECE, 2CS, 3ISE, University of lllinois at Urbana-Champaign, Urbana, IL 61801

10 ILLINOIS

Electrical & Computer Engineering
COLLEGE OF ENGINEERING

Introduction

= k-Truss: is a cohesive subgraph in which each edge is part of at least k-2 triangles [1,2].
» This subgraph relaxes the concept of clique and can be computed in polynomial time.
= k-truss decomposition, peeling approach:

o o o © ® o ® ®

i
/ / \

© 060 00000000 00900
©00:0 6.0 0.0 0:00-0 0-0 0 o

Initial Graph Delete edges Recount TC for Delete Edges Delete Edges Delete Edges This subgraph is only 4 truss
Calculate TC with TC<K-2 Affected edge With TC < K-2 With TC < K-2 With TC < K-2
This subgraph is 3 truss This subgraph is 4 truss

I Electrical & Computer Engineering 2

Single-GPU Optimizations (1/2)

Our 2018 implementation[3]: Our 2019 implementation:
k = kmin k = kmin
while(true) while(true)
while(num_affected _edges > 0) while(any_affected)
ktruss_kernel(k, edges, deleted, affected, ...) any_affected = ktruss_kernel(k, edges, deleted, ...)
num_affected_edges = count(affected) Unnecessary step !
num_deleted_edges = count(deleted) num_deleted_edges = reduce_add(deleted)
if(num_deleted _edges == num_edges) if(num_deleted _edges == num_edges)
break break
else else
edges = stream_compaction(deleted, edges) Expensive operation! if(num_deleted edges/num_edges > threshold)
num_edges = num_edges - num_deleted_edges edges = stream_compaction(deleted, edges)
k=k+1 num_edges = num_edges - num_deleted_edges
k=k+1

‘deleted’ list: holds a flag for each edge to indicate whether the edge is deleted.
‘affected’ list: holds a flag for each edge to indicate whether the edge is affected by the deletion of any other edge with which it shares triangles.

I Electrical & Computer Engineering 3

Single-GPU Optimizations (2/2)

2018 implementation:)]
Both triangle _count and affect_edges perform the same list

function ktruss_kernel(k, edges, deleted, affected, ...) intersection.
foreach (e in edges) In 2019 implementation:
if('deleted[e] && affected[e]) : :
tc = triangle_count(e) m) function triangle_count(e) a) While doing triangle counting, record the indices of
if(tc < k-2) 3:::;(—:?;;”323(:(2) first and last intersections of the two adj. lists and use
deleted|e] = true intersections = intersect(adj(u), adj(v)) them.ln affect_edges’ step: . .
affect_edges(e) return count(intersections) function affect_edges(e, u_first, u_last, v_first, v_last)

intersections = intersect(adj(u), adj(v), u_first,...)

function affect_edges(e)
u = get_left_node(e) b) In the triangle counting step, we start marking edges

v = get_right_node(e) as ‘affected’ early once there is no hope to find k-2
intersections = intersect(adj(u), adj(v)) triangles

foreach(i in intersections)
affected[i] = true

I Electrical & Computer Engineering 4

Multi-GPU Implementation

In 2018 submission: In 2019 submission:
— During the ktruss_kernel: graph data is read-
k=k1 only. ‘cudaMemAdviseReadMostly’ prevents
redundant transfers of read-only data.
GP.Li'.__O G_Pp 1 G?U 2 GPU 3 « Slow migrations reduced and performance

greatly improved.

— 'Deleted’ and ‘Affected’ lists are read/write.
Graph Edges [— Parallelize across k values:
Deleted k=kO k=k1 k=k2 k=k3
Affected
Unified Memory GPUO GPU 1 GPU 2 GPU 3
Due to list intersection operations: —S:SS—E;'Ete‘:i _S:L?;_‘E;'Etei
. ct ct
Graph, ‘Deleted’, and ‘Affected’ lists are accessed L -
randomly by all GPUs = many redundant data transfers > —55311—‘5;'9:‘3 —gﬁﬁs—ﬁfi'iﬂi
significant slowdown as we scale GPUs. = e _ e
_ - Graph |
Unified Memory I

I Electrical & Computer Engineering 5

Binary-Search Approach to Find Maximum k

Algorithm:
- Evaluate for k=(kupper_bound + kmin)/2.

- If the graph is not empty, do stream compaction and set kmin = k
- Else, revert to previous state and set Kupper_bound = k

- StOp when kupper_bound - kmin <= 1.

Example: Kupper_bound = 23, Kmin =3
If kmax=9

I Electrical & Computer Engineering

How to estimate kupper_bound? Find the largest degree d for which
there are at least d + 1 nodes, kupper_bound = d+1.

ﬁdditional optimizations:
eliminate nodes with degree < k.
edges:

iteration, we remove nodes with out-degree < 5% of

\ kupper_bound.

 Two evaluated k values can be far apart - before evaluating k,
e To process large graphs, such as Twitter with 2.8B bidirectional

* Empirically, kmax > 5% of kupper_bound. Thus, before the first

L

)

I Evaluation Platform

= A node with Newell architecture from the NCSA HAL cluster.
— 2 IBM Power9 CPUs each with
« 20 Cores
« 256GB of Memory
MW Link

— 4 NVIDIA Tesla V100 GPUs 15068/
— CPUs & GPUs connected via NVLINK 2.0 Volta V100 Volta V100

DDR4 (256G8B) DDR4(256GE)

I 120GB/s

- Power9
CPU

NVLink
150GB/s

Volta V100 Volta V100

1 120GB/s

¥-bus
Pcf'aerﬂ - BAGBE/s
CPU

16GB 16GB 16GB 16GB

Memory Management:

— All auxiliary data structures are stored in the unified memory. ﬂ ﬂﬂ
$!

— Allocated using cudaMallocManaged.
— CUDA unified memory hints:
» cudaMemAdviseSetReadMostly
» cudaMemAdviseUnsetReadMostly

Unified Memory

I Electrical & Computer Engineering 7

Single-GPU results

2019 Incremental vs. 2018 Incremental B 2019 Binary vs. 2018 Incremental

- [2019 optimizations in incremental approach improves performance up to 35.2x (6.9x J

on average) compared to 2018 submission.

(@)
SN

w
N

22.6 1o 24.1 . 243
19.5
17.9 17.9 17.0 17.0 15.8
124 I 13.8 13.7 14.5
11.5
10.3 10301 B3 o I I [| I T |

Binary-search algorlthm finds k-max up to 101.5x (24.3x on average) faster compared | °

to 2018 submissionI

=
(@)

Speedup (Log Scale)

1
< Binary-search algorithm finds the maximum k- truss for “Twitter” graph having 2.8 &
O <
& billion bidirectional edges in just 16 minutes on a single V100 GPU!! v
2 il fb"ld;@épo \00:060 S S %ééog\i&gog\;&bg «@Q\&Q&fa&?\:’b@é’) :
¥ 9 9 @ Y 9

I Electrical & Computer Engineering

Multi-GPU Parallel Efficiency

100 Bamazon0601 @ cit-Patents @ flickrEdges
ograph500-scale18-ef16 mgraph500-scale19-ef16 mgraph500-scale20-ef16

__ 90 mgraph500-scale21-ef16 mgraph500-scale22-ef16 ®mgraph500-scale23-ef16
> 80 B graph500-scale24-ef16 mgraph500-scale25-ef16

©

=

8 70

]

S 60]

Multi-GPU optimization improves performance up to 151.3x (78.8x on average)
compared to 2018 multi-GPU implementation.

.IIIIIIIII -|I
3

Number of GPUs

|

w
o

Parallel Effi
(%]
o

—
o

o

I Electrical & Computer Engineering 9

I Conclusion

« Optimizations for the single-GPU implementation: limiting unnecessary compactions,
reductions, and list intersection comparisons.

« Scalable multi-GPU implementation by using memory hints and parallelizing across k.
 Maximum k-truss, through binary-search rather than the incremental approach.

Compared to our 2018 work [3]:
Single-GPU:
Our incremental approach improves performance up to 35.2x (6.9x on average).
Our binary approach improves performance up to 101.5x (24.3x on average).
Multi-GPU:
We improve performance up to 151.3x (78.8x on average).
The binary-search finds kmax for “Twitter” graph (2.8B bidirectional edges) in just 16 minutes on a single V100 GPU.

I Electrical & Computer Engineering 10

References

[1] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. In National Security Agency Technical
Report, page 16, 2008.

[2] J. Cohen. Graph twiddling in a MapReduce world. In Computing in Science & Engineering, 11(4):29-41,
2009

[3] V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong, and W. Hwu, “Collaborative (cpu + gpu)
algorithms for triangle counting and truss decomposition,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC), Sep. 2018, pp. 1-7.

I Electrical & Computer Engineering 11

Thanks

S_—,,,,,,,,,,_____—_,—_,—_—,—————————————
I Electrical & Computer Engineering

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

