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Introduction

= k-Truss: is a cohesive subgraph in which each edge is part of at least k-2 triangles [1,2].
» This subgraph relaxes the concept of clique and can be computed in polynomial time.
= k-truss decomposition, peeling approach:
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Single-GPU Optimizations (1/2)

Our 2018 implementation[3]: Our 2019 implementation:
k = kmin k = kmin
while(true) while(true)
while(num_affected _edges > 0) while(any_affected)
ktruss_kernel(k, edges, deleted, affected, ...) any_affected = ktruss_kernel(k, edges, deleted, ...)
num_affected_edges = count(affected) Unnecessary step !
num_deleted_edges = count(deleted) num_deleted_edges = reduce_add(deleted)
if(num_deleted _edges == num_edges) if(num_deleted _edges == num_edges)
break break
else else
edges = stream_compaction(deleted, edges) Expensive operation!  if(num_deleted edges/num_edges > threshold)
num_edges = num_edges - num_deleted_edges edges = stream_compaction(deleted, edges)
k=k+1 num_edges = num_edges - num_deleted_edges
k=k+1

‘deleted’ list: holds a flag for each edge to indicate whether the edge is deleted.
‘affected’ list: holds a flag for each edge to indicate whether the edge is affected by the deletion of any other edge with which it shares triangles.
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Single-GPU Optimizations (2/2)

2018 implementation: ) ]
Both triangle _count and affect_edges perform the same list

function ktruss_kernel(k, edges, deleted, affected, ...) intersection.
foreach (e in edges) In 2019 implementation:
if('deleted[e] && affected[e]) : :
tc = triangle_count(e) m) function triangle_count(e) a) While doing triangle counting, record the indices of
if(tc < k-2) 3:::;(—:?;;”323(:(2) first and last intersections of the two adj. lists and use
deleted|e] = true intersections = intersect(adj(u), adj(v)) them.ln affect_edges’ step: . .
affect_edges(e) return count(intersections) function affect_edges(e, u_first, u_last, v_first, v_last)

intersections = intersect(adj(u), adj(v), u_first,...)

function affect_edges(e)
u = get_left_node(e) b) In the triangle counting step, we start marking edges

v = get_right_node(e) as ‘affected’ early once there is no hope to find k-2
intersections = intersect(adj(u), adj(v)) triangles

foreach(i in intersections)
affected[i] = true
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Multi-GPU Implementation

In 2018 submission: In 2019 submission:
— During the ktruss_kernel: graph data is read-
k=k1 only. ‘cudaMemAdviseReadMostly’ prevents
redundant transfers of read-only data.
GP.Li'.__O G_Pp 1 G?U 2 GPU 3 « Slow migrations reduced and performance

greatly improved.

— 'Deleted’ and ‘Affected’ lists are read/write.
Graph Edges [ — Parallelize across k values:
Deleted k=kO k=k1 k=k2 k=k3
Affected
Unified Memory GPUO GPU 1 GPU 2 GPU 3
Due to list intersection operations: —S:SS—E;'Ete‘:i _S:L?;_‘E;'Etei
. ct ct
Graph, ‘Deleted’, and ‘Affected’ lists are accessed L -
randomly by all GPUs = many redundant data transfers > —55311—‘5;'9:‘3 —gﬁﬁs—ﬁfi'iﬂi
significant slowdown as we scale GPUs. = e _ e
\_ - Graph |
Unified Memory I
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Binary-Search Approach to Find Maximum k

Algorithm:
- Evaluate for k=(kupper_bound + kmin)/2.

- If the graph is not empty, do stream compaction and set kmin = k
- Else, revert to previous state and set Kupper_bound = k

- StOp when kupper_bound - kmin <= 1.

Example: Kupper_bound = 23, Kmin =3
If kmax=9
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How to estimate kupper_bound? Find the largest degree d for which
there are at least d + 1 nodes, kupper_bound = d+1.

ﬁdditional optimizations:
eliminate nodes with degree < k.
edges:

iteration, we remove nodes with out-degree < 5% of

\ kupper_bound.

 Two evaluated k values can be far apart - before evaluating k,
e To process large graphs, such as Twitter with 2.8B bidirectional

* Empirically, kmax > 5% of kupper_bound. Thus, before the first

L
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I Evaluation Platform

= A node with Newell architecture from the NCSA HAL cluster.
— 2 IBM Power9 CPUs each with
« 20 Cores
« 256GB of Memory
MW Link

— 4 NVIDIA Tesla V100 GPUs 15068/
— CPUs & GPUs connected via NVLINK 2.0 Volta V100 Volta V100

DDR4 (256G8B) DDR4(256GE)

I 120GB/s

- Power9
CPU

NVLink
150GB/s

Volta V100 Volta V100

1 120GB/s

¥-bus
Pcf'aerﬂ - BAGBE/s
CPU

16GB 16GB 16GB 16GB

Memory Management:

— All auxiliary data structures are stored in the unified memory. ﬂ ﬂﬂ
$ !

— Allocated using cudaMallocManaged.
— CUDA unified memory hints:
» cudaMemAdviseSetReadMostly
» cudaMemAdviseUnsetReadMostly

Unified Memory
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Single-GPU results

2019 Incremental vs. 2018 Incremental B 2019 Binary vs. 2018 Incremental

- [ 2019 optimizations in incremental approach improves performance up to 35.2x (6.9x J

on average) compared to 2018 submission.
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Binary-search algorlthm finds k-max up to 101.5x (24.3x on average) faster compared | °

to 2018 submissionI
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Multi-GPU Parallel Efficiency
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Multi-GPU optimization improves performance up to 151.3x (78.8x on average)
compared to 2018 multi-GPU implementation.
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I Conclusion

«  Optimizations for the single-GPU implementation: limiting unnecessary compactions,
reductions, and list intersection comparisons.

« Scalable multi-GPU implementation by using memory hints and parallelizing across k.
 Maximum k-truss, through binary-search rather than the incremental approach.

Compared to our 2018 work [3]:
Single-GPU:
Our incremental approach improves performance up to 35.2x (6.9x on average).
Our binary approach improves performance up to 101.5x (24.3x on average).
Multi-GPU:
We improve performance up to 151.3x (78.8x on average).
The binary-search finds kmax for “Twitter” graph (2.8B bidirectional edges) in just 16 minutes on a single V100 GPU.
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Thanks ....
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