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 k-Truss: is a cohesive subgraph in which each edge is part of at least k−2 triangles [1,2].
 This subgraph relaxes the concept of clique and can be computed in polynomial time.
 k-truss decomposition, peeling approach:

Introduction
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Single-GPU Optimizations (1/2)
k = kmin
while(true)

while(num_affected_edges > 0)
ktruss_kernel(k, edges, deleted, affected, …)
num_affected_edges = count(affected)

num_deleted_edges = count(deleted)
if(num_deleted_edges == num_edges)

break
else

edges = stream_compaction(deleted, edges)
num_edges = num_edges - num_deleted_edges
k = k + 1

Our 2018 implementation[3]:
k = kmin
while(true)

while(any_affected)
any_affected = ktruss_kernel(k, edges, deleted, …)

num_deleted_edges = reduce_add(deleted)
if(num_deleted_edges == num_edges)

break
else

if(num_deleted_edges/num_edges > threshold)
edges = stream_compaction(deleted, edges)
num_edges = num_edges - num_deleted_edges

k = k + 1

Our 2019 implementation:

Unnecessary step !

Expensive operation !
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‘deleted’ list: holds a flag for each edge to indicate whether the edge is deleted.
‘affected’ list: holds a flag for each edge to indicate whether the edge is affected by the deletion of any other edge with which it shares triangles.



Single-GPU Optimizations (2/2)
2018 implementation:
function ktruss_kernel(k, edges, deleted, affected, …)

foreach (e in edges)
if(!deleted[e] && affected[e])

tc = triangle_count(e)
if(tc < k-2)

deleted[e] = true
affect_edges(e)

….

function triangle_count(e)
u = get_left_node(e)
v = get_right_node(e)
intersections = intersect(adj(u), adj(v))
return count(intersections)

function affect_edges(e)
u = get_left_node(e)
v = get_right_node(e)
intersections = intersect(adj(u), adj(v))
foreach(i in intersections)

affected[i] = true

Both triangle_count and affect_edges perform the same list 
intersection.
In 2019 implementation:

a) While doing triangle counting, record the indices of 
first and last intersections of the two adj. lists and use 
them in ‘affect_edges’ step:
function affect_edges(e, u_first, u_last, v_first, v_last)

intersections = intersect(adj(u), adj(v), u_first,…)

b) In the triangle counting step, we start marking edges 
as ‘affected’ early once there is no hope to find k-2 
triangles.
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In 2018 submission:
Multi-GPU Implementation
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Due to list intersection operations:
Graph, ‘Deleted’, and ‘Affected’ lists are accessed 
randomly by all GPUs many redundant data transfers 
significant slowdown as we scale GPUs.

In 2019 submission:
– During the ktruss_kernel: graph data is read-

only. ‘cudaMemAdviseReadMostly’ prevents 
redundant transfers of read-only data.

• Slow migrations reduced and performance 
greatly improved.

– ‘Deleted’ and ‘Affected’ lists are read/write.
– Parallelize across k values:



Binary-Search Approach to Find Maximum k
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Algorithm:
- Evaluate for k=(kupper_bound + kmin)/2.
- If the graph is not empty, do stream compaction and set kmin = k
- Else, revert to previous state and set kupper_bound = k
- Stop when kupper_bound - kmin <= 1.
Example: kupper_bound = 23, kmin = 3
If kmax=9

How to estimate kupper_bound? Find the largest degree d for which 
there are at least d + 1 nodes,  kupper_bound = d+1.

Additional optimizations: 
• Two evaluated k values can be far apart → before evaluating k, 

eliminate nodes with degree < k.
• To process large graphs, such as Twitter with 2.8B bidirectional 

edges:
• Empirically, kmax > 5% of kupper_bound.  Thus, before the first 

iteration, we remove nodes with out-degree < 5% of 
kupper_bound. 



 A node with Newell architecture from the NCSA HAL cluster.
– 2 IBM Power9 CPUs each with

• 20 Cores
• 256GB of Memory

– 4 NVIDIA Tesla V100 GPUs
– CPUs & GPUs connected via NVLINK 2.0 

Memory Management:
– All auxiliary data structures are stored in the unified memory.
– Allocated using cudaMallocManaged.
– CUDA unified memory hints:

• cudaMemAdviseSetReadMostly
• cudaMemAdviseUnsetReadMostly

Evaluation Platform
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Single-GPU results
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2019 Incremental vs. 2018 Incremental 2019 Binary vs. 2018 Incremental

2019 optimizations in incremental approach improves performance up to 35.2x (6.9x 
on average) compared to 2018 submission.

Binary-search algorithm finds k-max up to 101.5x (24.3x on average) faster compared 
to 2018  submission!

Binary-search algorithm finds the maximum k-truss for “Twitter” graph having 2.8 
billion bidirectional  edges  in  just  16  minutes  on  a  single  V100  GPU!!
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Multi-GPU Parallel Efficiency

Multi-GPU optimization improves performance up to 151.3x (78.8x on average) 
compared to 2018 multi-GPU implementation.
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Conclusion
• Optimizations for the single-GPU implementation: limiting unnecessary compactions, 

reductions, and list intersection comparisons.
• Scalable multi-GPU implementation by using memory hints and parallelizing across k.
• Maximum k-truss, through binary-search rather than the incremental approach.
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Compared to our 2018 work [3]:
Single-GPU:

Our incremental approach improves performance up to 35.2x (6.9x on average).
Our binary approach improves performance up to 101.5x (24.3x on average).

Multi-GPU:
We improve performance up to 151.3x (78.8x on average).

The binary-search finds kmax for “Twitter” graph (2.8B bidirectional edges) in just 16 minutes on a single V100 GPU.
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Thanks ….


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

