
NUMA-Aware Data-Transfer Measurements for
Power/NVLink Multi-GPU Systems ?

Carl Pearson1, I-Hsin Chung2, Zehra Sura2, Wen-Mei Hwu1, and Jinjun Xiong2

1 University of Illinois Urbana-Champaign, Urbana IL 61801, USA
{pearson, w-hwu}@illinois.edu

2 IBM Thomas J. Watson Research Center, Yorktown Heights NY 10598, USA
{ihchung, zsura, jinjun}@us.ibm.com

Abstract. High-performance computing increasingly relies on heteroge-
neous systems with specialized hardware accelerators to improve applica-
tion performance. For example, NVIDIA’s CUDA programming system
and general-purpose GPUs have emerged as a widespread accelerator in
HPC systems. This trend has exacerbated challenges of data placement
as accelerators often have fast local memories to fuel their computa-
tional demands, but slower interconnects to feed those memories. Cru-
cially, real-world data-transfer performance is strongly influenced not
just by the underlying hardware, but by the capabilities of the program-
ming systems. Understanding how application performance is affected by
the logical communication exposed through abstractions, as well as the
underlying system topology, is crucial for developing high-performance
applications and architectures. This report presents initial data-transfer
microbenchmark results from two POWER-based systems obtained dur-
ing work towards developing an automated system performance charac-
terization tool.

Keywords: CUDA · NVLink · Unified Memory · GPGPU · Benchmark

1 Introduction

With the end of Dennard scaling, computer architects have sought to satisfy the
demand for increasing performance by providing specialized hardware acceler-
ators tuned to computation with particular characteristics. Perhaps the most
successful example of this trend is the widespread adoption of graphics process-
ing units (GPUs) for more general data-parallel compute tasks. Figure 1 shows
two such systems with two CPUs and four GPUs; an IBM S822LC for High
Performance Computing [4], and an IBM AC922 [3].

? This work is supported by IBM-ILLINOIS Center for Cognitive Computing Systems
Research (C3SR) - a research collaboration as part of the IBM Cognitive Horizon
Network. This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation award OCI-0725070
and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing Applications.



2 C. Pearson et al.

NVLink 1.0 
80 GB/s
2 Lanes

IBM Power8
256 GB DDR4

NVIDIA P100
 16 GB HBM2 GPU

CPUX Bus
38.4 GB/s

NUMA Node 0 NUMA Node 1

GPU 0

GPU 1

CPU 0 CPU 1

GPU 2

GPU 3

(a)

NVLink 2.0 
150 GB/s
3 Lanes

IBM Power9
512 GB DDR4

NVIDIA V100
 16 GB HBM2 GPU

CPUX Bus
64 GB/s

NUMA Node 0 NUMA Node 1

GPU 0

GPU 1

CPU 0 CPU 1

GPU 2

GPU 3

(b)

Fig. 1: Summary of the examined systems. (a) shows S822LC, a POWER8-based
system with NVLink 1.0 running nvcc 9.1.85, CUDA driver 390.31, linux kernel
4.4.0-96. (b) shows AC922, a POWER9-based system with NVLink 2.0 running
nvcc 9.2.88, CUDA Driver 396.26, linux kernel 4.14.0-49.

The enormous compute capability of GPUs demands high-bandwidth ac-
cess to data to “feed the beast.” The GPUs have high-bandwidth memories
(732 GB/s and 900 GB/s on P100 and V100 respectively) to help provide this
data, but relatively slow interconnects. A consequence of this architecture is that
moving data into accelerator memory to support high-performance execution is
a first-order design consideration for any accelerated application. This must be
managed by either the application developer explicitly, or by the programming
system. In either case, understanding the communication capabilities exposed
by the system is foundational to building high-performance applications.

The application does not interface directly with the hardware, but through
software abstractions such as the Linux Non-Uniform Memory Access [1] (NUMA)
system or the NVIDIA Compute Unified Device Architecture [2] (CUDA) pro-
gramming system. These software abstractions expose a set of logical commu-
nication capabilities on top of the hardware. As this report demonstrates, these
capabilities are substantially affected by the underlying hardware, but have dis-
tinct performance profiles in their own right. This report describes some initial
results obtained while developing an automated approach for understanding how
applications use these systems and the capabilities the systems provide.

The rest of this report is organized as follows: Section 2 reports initial mea-
surements of data transfer using cudaMemcpy. Section 3 reports initial measure-
ments of data transfer bandwidth using CUDA managed memory. Section 4
discusses future work and concludes.

2 Explicit Data Transfer

The microbenchmark results presented in this report are available at microbench [7],
a set of microbenchmarks developed using Google’s Benchmark support library [5].

Explicit CPU-GPU transfers are caused by the cudaMemcpy family of func-
tions being invoked on one pointer to a host allocation and one pointer to a device



NUMA-Aware Data-Transfer for Power/NVLink 3

allocation. The host allocation may be pageable (created by malloc or new), or
pinned (created by cudaMallocHost or cudaHostAlloc). The device allocation is
created by cudaMalloc. Algorithm 1 demonstrates a Google Benchmark loop for
CUDA operations. The explicit transfers are all asynchronous cudaMemcpAsync

operations. In the setup phase of the benchmark, a source and destination al-
location are created on the host and device. Execution is pinned to the correct
host and device through libnuma [8, 1] and/or cudaSetDevice APIs, respec-
tively. For CUDA operations that are asynchronous with respect to the host,
CUDA events are used to accurately measure the operation time without mea-
suring other system overhead. For synchronous operations, the operating system
wall time is used to measure the operation. In the teardown phase, resources are
freed.

Algorithm 1 Measuring transfer time of bytes between src and dst for asyn-
chronous and synchronous CUDA operations using Google Benchmark support
library.

1: function ASYNC BANDWIDTH(dst, src, bytes)
2: ... . benchmark setup
3: for state do . Google Benchmark loop
4: cudaEventRecord(start)
5: asynchronousTransfer(dst, src, bytes) . timed asynchronous operation
6: cudaEventRecord(stop)
7: millis← cudaEventElapsedTime(start, stop)
8: state.SetIterationTime(millis

1000
) . record time

9: end for
10: . benchmark teardown
11: end function

12: function SYNC BANDWIDTH(dst, src, bytes)
13: ... . benchmark setup
14: for state do . Google Benchmark loop
15: state.PauseTiming()
16: ... . per-iteration setup
17: state.ResumeTiming()
18: synchronousTransfer(dst, src, bytes) . timed synchronous operation
19: end for
20: ... . benchmark teardown
21: end function

Figures 2a-f shows measured transfer rates. The NVLink 2.0 bandwidth of
150GB/s on AC922 compared to the 80 GB/s NVLink 1.0 bandwidth on S822LC
is reflected in higher transfer rates on AC922 in most cases. This is especially
evident in pinned local transfers or local GPU-GPU transfers. In the GPU-GPU
transfers, peer access refers to whether the GPUs are configured to support direct
DMA between GPUs. Without peer access, a GPU-to-GPU transfer is imple-
mented with a GPU-to-CPU transfer followed by a CPU-to-GPU transfer, effec-
tively halving the bandwidth observed by the application. On S822LC, remote



4 C. Pearson et al.

GPUs do not support peer access (Figure 2e). Underscoring the performance
complexities in these systems are the direction- and affinity-dependent perfor-
mance seen in almost all CPU/GPU transfers involving pageable and pinned
allocations. There is also a strong affinity effect in GPU-GPU transfers when
peer access is enabled.

3 Unified Memory

In CUDA 6.0, NVIDIA introduced a unified memory system, where a single type
of allocation can be transparently referenced by the CPUs and GPUs [6]. Instead
of the programmer explicitly moving data, the CUDA system is responsible for
ensuring accessed data is present on the correct device. On both these systems,
the unified memory allocations operate at page granularity. A “coherence” or
“demand” migration occurs when an accessing device does not have the page
in its local memory, and that page must be moved from the currently owning
device. A “prefetch” migration occurs when pages are bulk-migrated to a device
ahead of their use.

Algorithm 1 shows the asynchronous and synchronous measurements used for
unified memory benchmarks. In the setup phase, a single unified memory alloca-
tion is created, which is accessible from any device. cudaMemPrefetchAsync is
used to move the allocation’s backing pages to the source or destination device in
the per-iteration setup phase. The timed operation is cudaMemPrefetchAsync to
generate prefetch transfers, or CPU/GPU kernels to generate demand transfers.

Figures 2g-l show example results for CPU/GPU and GPU/GPU transfers,
for both prefetch and demand migrations. Prefetch bandwidth is capable of
achieving nearly the same performance as pinned memory transfers; demand
migration bandwidth is substantially lower for large transfers. The GPU-to-
CPU demand transfer rate is limited by the rate that a single CPU thread can
generate loads. Prefetch transfers exhibit some performance variation based on
device affinity and direction of transfer. Coherence overhead limits CPU/GPU
demand transfer bandwidth and these transfers do not show strong correlation
with device affinity.

3.1 Page Fault Latency

Unified memory page fault latency is estimated by constructing a linked list in
managed memory, forcing it to be migrated to the source device, and executing
a single-threaded CPU or GPU kernel on the destination device to traverse it.
The stride between linked-list elements is large enough to avoid the effects of
prefetching. Each access to the list incurs a page fault. The incremental change
in function execution time as the number of strides increases is therefore an
approximate measure of the page fault latency. Table 1 summarizes the estimated
page fault latencies. There is no substantial difference in page fault latencies for
different CPUs in the same system, so values for faults involving CPU0 are
shown. AC922 is slower than S822LC in all categories.



NUMA-Aware Data-Transfer for Power/NVLink 5

Table 1: Measured page-fault latencies.
Page Fault Latency (µs)

Type S822LC AC922

CPU → GPU 14.9 24.1

CPU ← GPU 13.6 27.4

GPU0 ↔ GPU1 (local) 25.5 38.0

GPU0 ↔ GPU2 (remote) 28.8 41.5

4 Conclusion

This report presents initial results of a system interconnect characterization
effort. Other relevant transfer bandwidths under investigation include CPU-to-
CPU, CUDA remote mappings, system atomics, GPU-direct I/O and network
data transfers, and more detailed characterizations of the communication meth-
ods discussed in this report. A basis set of these algorithms will be used to create
a microbenchmark suite. This suite could be leveraged to sanity-check system
configuration during firmware development and help eliminate performance bot-
tlenecks caused by incorrect parameters or implementation heuristics.

Furthermore, the NUMA and CUDA libraries present a logical abstraction
of the system communication. To create accurate performance models, a re-
lationship between the logical communication paths and underlying hardware
should be established. This work will be expanded to enumerate the underlying
hardware through the operating system, and observe traffic on that hardware
to establish the logical-to-physical mapping. Tying the underlying hardware to
the observed bandwidths allows the appropriate performance models to be au-
tomatically generated. Those models may then be utilized to create NUMA
and multi-GPU topology-aware communication runtimes and allocators. Those
models may also be used for architecture studies to understand the high-level
architectural tradeoffs for affecting application performance.

References

1. numa(3) Linux Programmer’s Manual (August 2007)
2. Cuda c programming guide (Nov 2017)
3. Caldeira, A.B.: Ibm power system ac922 introduction and technical overview. IBM

Redbooks (2018)
4. Caldeira, A.B., Haug, V., Vetter, S.: Ibm power system 822lc for high performance

computing introduction and technical overview. IBM Redbooks (2016)
5. Google: Benchmark. https://github.com/google/benchmark (2018)
6. Harris, M.: Unified memory in cuda 6 (2013),

https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
7. Pearson, C., Dakkak, A., Li, C.: microbench. https://github.com/rai-

project/microbench (2018)
8. Wickman, C., Lameter, C., Schermerhorn, L.: numactl v2.0.11.

https://github.com/numactl/numactl (2015)



6 C. Pearson et al.

0

20

40

60

80

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(a) S822LC Pageable CPU/GPU Transfers

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(b) AC922 Pageable CPU/GPU Transfers

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

0

20

40

60

80

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(c) S822LC Pinned CPU/GPU Transfers

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(d) AC922 Pinned CPU/GPU Transfers

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

0

20

40

60

80

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(e) S822LC Explicit GPU/GPU Transfers

GPU0 to GPU1 (peer)
GPU0 to GPU1 (no peer)
GPU0 to GPU2 (no peer)

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)
(f) AC922 Explicit GPU/GPU Transfers

GPU0 to GPU1 (peer)
GPU0 to GPU2 (peer)
GPU0 to GPU1 (no peer)
GPU0 to GPU2 (no peer)

0

20

40

60

80

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(g) S822LC CPU/GPU Prefetch Bandwidth

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(h) AC922 CPU/GPU Prefetch Bandwidth

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

0

20

40

60

80

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(i) S822LC CPU/GPU Coherence Bandwidth

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(j) AC922 CPU/GPU Coherence Bandwidth

CPU0 to GPU0 (Local)
CPU0 to GPU2 (Remote)
GPU0 to CPU0 (Local)
GPU2 to CPU0 (Remote)

21
0

21
4

21
8

22
2

22
6

23
0

23
4

Transfer Size (B)

0

20

40

60

80

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(k) S822LC GPU/GPU Unified Memory Bandwidth

CPU0 to GPU0 (Local, Prefetch)
CPU0 to GPU2 (Remote, Prefetch)
GPU0 to CPU0 (Local, Coherence)
GPU2 to CPU0 (Remote, Coherence)

21
0

21
4

21
8

22
2

22
6

23
0

23
4

Transfer Size (B)

Tr
an

sfe
r B

an
dw

id
th

 (G
B/

s)

(j) AC922 GPU/GPU Unified Memory Bandwidth

GPU0 to GPU1 (Local, Prefetch)
GPU0 to GPU2 (Remote, Prefetch)
GPU0 to CPU0 (Local, Coherence)
GPU2 to CPU0 (Remote, Coherence)

Fig. 2: Measured transfer bandwidths for explicit and unified-memory transfers
for S822LC and AC922. Transfer bandwidth vs. transfer size is shown. Each
measurement point is the average of at least five iterations, repeated five times.
Error bars show the standard deviation of the five average measures.


