
NUMA-Aware Data-Transfer Measurements for
Power/NVLink Multi-GPU Systems
Carl Pearson1, I-Hsin Chung2, Zehra Sura2, Wen-mei Hwu1, Jinjun Xiong2
1 Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign
2 IBM T.J. Watson Research Center

1

▪ Motivation
– Complex multi-cpu / multi-gpu nodes

▪ Measurement Approach
– rai-project/microbench
– Reference Systems

▪ Selected Results

Outline

2

Motivation

3

Heterogeneous Hardware is Widely Available

D
R

A
M

D
R

A
M

DRAM

DRAM

H
B

M
H

B
M

H
B

M
H

B
M

2012 2018

NVLink 2.0 x3
 (150 GB/s)

PCIe 3.0 x16
(31.6 GB/s)

4

System Software is Complicated

Mapped

Pageable

Write-
Combined

Allocation

Mapping

Allocation

implicit

cudaMemcpy

Pinned Allocation

Allocation

Mappingimplicit

MappingcudaDeviceEnablePeerAccessAllocation

e.g. explicit CUDA memory management

CPU GPU0 GPU1

5

System Software is Complicated
e.g. CUDA Unified Memory

GPU 0 GPU 1 CPU

cudaSetDevice(0);
cudaMallocManaged(&a,...);

a[page0] = 0; // gpu0

a[page1] = 1; // gpu1 Page fault and migration

a[page2] = 2; // cpu Page fault and migration

cudaMemAdvise(a, gpu1,
cudaMemAdviseSetPreferredLocation);
a[page1] = 1; // cpu

Write served over NVLink

cudaMemPrefetcAsync(a, gpu1); Bulk page migration

6

Measurement Approach

7

▪ NUMA / CPU / GPU Communication Microbenchmarks
– libnuma
– CUDA explicit memory management
– CUDA unified memory coherence and prefetch

▪ Across all NUMA / GPU and GPU / GPU combinations

“rai-project/microbench”

8 https://github.com/rai-project/microbench

Loop repetitions
Establish allocations
Loop iterations

Move data to src
Record time
Move data to dst
Record time

Free allocations
Metric = average

Compute average, stddev of metric

Repeat to find variability
Setup

Main loop

Teardown

9

High-Level Benchmark Approach

▪ Present
– CUDA primitive operations

• Kernel launch, ...
– Neural Network primitives

• CUDNN operations, parameters from published networks
▪ In Progress

– Full-Duplex GPU-GPU communication
– Multi-GPU collectives
– Tensorcores

▪ Future
– Disk / Network

“rai-project/microbench” Other Microbenchmarks

10 https://github.com/rai-project/microbench

▪ Google Microbenchmark Support Library for
benchmarking functions
– Benchmark filtering
– Localized optimization controls
– Manual or automatic timing
– Automatic determination of number of runs
– Repeated runs and simple statistics
– JSON output files

“rai-project/microbench” Infrastructure

11 https://github.com/google/benchmark

▪ CMake - control build and installation process
– cotire1: automate precompiled headers and single compilation

unit builds
– hunter2: cross-platform package manager for C++

▪ Docker
– raiproject/microbench:${arch}-${cuda}-${branch}
– Have amd64 CUDA 7.5, 8.0, 9.2
– Want ARM, POWER
– Expect Docker has network performance hit3

“rai-project/microbench” Infrastructure

12

▪ Plotting google/benchmark results
▪ yaml plot specification format
▪ Parsing/filtering Benchmark data files
▪ Generate makefile dependencies
▪ Python 2 & 3

“rai-project/microbench_plot”

13 https://github.com/rai-project/microbench_plot

Reference Systems

14

Minsky
4.4.0-96-generic

CUDA 9.1.85
Driver 390.31

Newell
4.14.0-49.2.2.el7a.ppc64le

CUDA 9.2.88
Driver 396.26

Selected Results

15

Faster Interconnects
PCIe 3.0 x16
(15.8 GB/s)

NVLink 2.0 x3
(75 GB/s)

16

NVLink 1.0 x2
(40 GB/s)

Device Affinity and Transfer Bandwidth (Newell)

17

Data placement has a big bandwidth impact

Pageable cudaMemcpy (1/4)

18

APPLICATION ADDRESS SPACE KERNEL ADDRESS SPACE

GPUCPU

CPU DRAM GPU DRAM

a_h a_d

1) Allocate pageable memory

a_h = new int[]
cudaMalloc(&a_d)

Pageable cudaMemcpy (2/4)

19

APPLICATION ADDRESS SPACE KERNEL ADDRESS SPACE

GPUCPU

CPU DRAM GPU DRAM

a_h a_d

2) Initiate CUDA Memcpy

cudaMemcpy(a_d, a_h)

Pageable cudaMemcpy (3/4)

20

APPLICATION ADDRESS SPACE KERNEL ADDRESS SPACE

GPUCPU

CPU DRAM GPU DRAM

a_h a_d

3) Driver copies to pinned internal buffer

Pageable cudaMemcpy (4/4)

21

APPLICATION ADDRESS SPACE KERNEL ADDRESS SPACE

GPUCPU

CPU DRAM GPU DRAM

a_h a_d

4) CPU instructs GPU to begin Direct Memory Access copy

Pinned cudaMemcpy (1/2)

22

APPLICATION ADDRESS SPACE KERNEL ADDRESS SPACE

GPUCPU

CPU DRAM GPU DRAM

a_h a_d

1) Allocate pinned memory

cudaMallocHost(&a_h)
cudaMalloc(&a_d)

Pinned cudaMemcpy (2/2)

23

APPLICATION ADDRESS SPACE KERNEL ADDRESS SPACE

GPUCPU

CPU DRAM GPU DRAM

a_h a_d

2) CPU instructs GPU to begin Direct Memory Access copy

CPU-to-GPU Transfers from Pageable Allocations

24

Pageable copies introduce strange performance

Local: GPU-to-CPU is faster
Remote: CPU-to-GPU is

faster

Transfer Anisotropy

25

P9 single-thread
memory copy bandwidth

lower than P8

Intra-CPU CudaMemcpy()

26

Page Fault Latency

27

P9 higher page fault latency than P8 (no ATS)

▪ Multithreaded Benchmarks
– No built-in sync, ended up using OpenMP

▪ Needs some hints about computing reasonable runtime
when CPU time >> wall time

▪ Benchmark function can only take integer arguments
– Can’t pass in a set of GPU ids, for example

Google Benchmark Lessons Learned

28

▪ Pre-release version available now
– github.com/rai-project/microbench

▪ 1.0 (this summer)
– Unified and explicit memory
– Plotting
– PCIe / NVLink, POWER / x86, Pascal / Volta

▪ 1.x
– Collective communication and contention

▪ 2.0
– Neural network & Tensorcore primitives
– Website with hosted results

▪ 2.x
– Disk / network / multi-node

Release Plan

29

▪ Sanity check for system developers
▪ Empirical data for machine performance models

Future Directions

30

▪ CUDA / NUMA communication microbenchmarks
– github.com/rai-project/microbench
– github.com/rai-project/microbench_plot

▪ Some unexpected results
– Need for open, comprehensive measurement techniques

▪ Underlying communication primitives
– Sanity checks
– Performance models

Summary

31

Thank You
pearson@illinois.edu

32

References
[1] https://github.com/sakra/cotire
[2] https://github.com/ruslo/hunter
[3] Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015,
March). An updated performance comparison of virtual
machines and linux containers. In Performance Analysis of
Systems and Software (ISPASS), 2015 IEEE International
Symposium On (pp. 171-172). IEEE.

33

