
GPU Performance Nuggets
Simon Garcia de Gonzalo & Carl Pearson
PhD Students, IMPACT Research Group
Advised by Professor Wen-mei Hwu
Jun. 15, 2016

grcdgnz2@illinois.edu
pearson@illinois.edu

GPU Performance Programming
GPU Performance questions from Blue Waters users
1) Can I speed up my code on an XK node with a CUDA implementation
2) Is my CUDA implementation “fast” / why isn’t it faster?

These questions have answers, and you can answer them!

Outline of this talk:
 Introduce a pair of NVIDIA performance tools available on Blue Waters

What the GPU memory hierarchy provides for your application
Can memory hierarchy optimization go too far? A Blue Waters case study.

nvprof: collect (or view) profiling data

aprun nvprof \
 -o timeline.nvp \
 ./my-cuda-app

aprun nvprof \
 --analysis-metrics \
 -o analysis.nvp \
 ./my-cuda-app

timeline.nvprof

analysis.nvprof

Timeline of CUDA runtime calls, kernel
execution times, etc. ~No run time
overhead

Detailed performance data for each
kernel execution. Large run time
overhead

Aside: nvprof and MPI

PMI_NO_FORK=1 \
aprun nvprof \
 -o timeline.%q{ALPS_APP_PE}.nvprof \
 ./my-cuda-mpi-app

Prevent MPI runtime from forking the
app into a separate process, which
hides it from nvprof

Unique profile output file per MPI rank

nvvp

K20X Peak Memory Bandwidth

Accelerator Peak Single-Precision
Rate (TFLOPS)

Peak Global
Memory

Bandwidth (GB/s)
FLOPS / word

C2070 (Fermi) 1.03 144 28.7

K20X (Kepler) 3.94 250 63.0

M40 (Maxwell) 5.83 288 80.9

P100 (Pascal) 9.52 720 (!!!) 52.9

(most) GPU kernels are limited by memory before compute

CUDA Compute Capability 3.5 Memory Model
Thread-Private Memory
48KB Shared Memory
6GB Global Memory

Shared Memory:
Accelerate predictable repeated access to

data.
Constant Memory:

High bandwidth access to read-only data
Global Memory:

Data used by GPU kernels must be here

Global Memory

Thread

Shared

Constant

K20x Memory Subsystem
Registers

Shared Rd-Only
Cache

L2

DRAM

L1

Register File (256KB)

Shared Mem / L1 (64KB)

Read-Only Cache (48KB)

“CUDA Cores”

L2 (1.5MB)

D
R

A
M

 (6
G

B
)

...

732 GB/s

187 GB/s

25
0

G
B

/s

Use the memory hierarchy to reduce the DRAM FLOPS/word ratio

… 14 SMXs

Constant
 Cache(s)

Constant
 Cache(s)

Different memories for different data

If most of your memory accesses match one of these
patterns, good results are possible.

L1 Cache Register spills / stack data

L2 Cache Global data locality across thread blocks

Read-Only Cache Unaligned, random, read-only, 2D prefetch

Constant Cache Aligned, uniform, read-only, “very small”

Shared Memory Predictable locality within a thread block

DRAM Aligned, consecutive access by consecutive threads

nvvp: Stencil Stall Reasons

Simple Shared / Constant Memory

Simple (GB/s) Optimized (GB/s)

L1 Global Loads 105.4 34.1

Shared Loads 0.0 1228.4

Device Memory Reads 4 27.4

Device Memory Writes 3.9 26.1

Speedup 1 7.8

nvvp: Memory Bandwidth (stencil)

Memory operations Control-flow operations Arithmetic operations

nvvp: Utilization (stencil)
Simple Shared / Constant Memory

nvvp: “Kernel performance is bound by instruction and memory
latency!”

Latency limited kernels

● Characterized by having both low compute
utilization and low memory utilization

● Low GPU occupancy is the main factor in this
type of limitation.

● Unlike latency oriented CPUs, GPUs need a
large degree of ILP to hide instruction latency.

● Common issue for highly optimized kernels
that overuse limited resources that lowers
possible achievable occupancy.

Resources that limit occupancy
● The following table contain the resources that are most likely to cause low occupancy

Accelerator

Maximum
Threads per

SM

Maximum
Blocks per

SM

Shared
Memory per

SM

Maximum
Registers per

Threads

C2070
(Fermi) 1536 8 48KB 63

K20X
(Kepler) 2048 16 48KB 255

M40
(Maxwell) 2048 32 96KB 255

P100
(Pascal) 2048 32 64KB 255

Case study: Reducing share memory
● 5.97KB of shared memory per block was being used
● Tesla K20X is configured to have 48KB of shared memory per SMX
● Each SMX was limited to simultaneously execute only 8 blocks (32 warps) out of the possible 16

block (64 warps)
● What to do:

● Shuffle instruction for reduction

● Some __syncthreads() can be removed due to threads not having to wait for all threads to
read or write to shared memory

W
ar

ps
 p

er
 S

M

Case study: Reducing share memory
● By using less shared memory we lowered the memory utilization as expected but did not improve

the compute utilization…. We are still Latency limited!

● Register usage could be the limiting resources.

Case study: Reducing registers usage
● 56 registers per thread was being used or 14336 registers per block
● Tesla K20X is configured to have up to 65536 registers per SMX
● Each SMX was limited to simultaneously execute only 4 blocks (32 warps) out of the possible 16

block (64 warps)
● No direct way of controlling register usage, but we can help the

 compiler to do a better job.
● What to do:

__launch_bounds__(maxThreadsPerBlock, minBlockPerMultiProc)

● The compiler will derive the number of register it needs per threads
to be able to handle minBlockPerMultiProc*maxThreadsPerBlock per
SMX.

NUM_REG LOCAL_MEM NUM_INSTRUCTIONS

W
ar

ps
 p

er
 S

M

Case study: Reducing registers usage
● Register usage decreased from 56 to 24 thus utility rose to approximately 70%

● Further reducing register usage causes spilling onto global memory adversely affecting execution
time!

What does it all mean in terms of speedup
● Two kernels from ChaNGa, N-Body Cosmological application,

 (Prof. Thomas Quinn, University of Washington) :
○ particleGravityComputation
○ nodeGravityComputation

● Both kernels are non-trivial and highly optimized making use of shared memory.

● After described latency optimizations:
○ particleGravityComputation

■ Utilization improved from about 40% to 70%
■ 1.66x speedup

○ nodeGravityComputation
■ Utilization improved from about 30% to 60%
■ 2.11x speedup

Takeaways
● Writing a CUDA kernels is becoming easier, but getting good performance is not.

● Know the tools you have available. Profiling is key to performance

● Fitting your application to the GPU memory hierarchy is critical for performance

● Resources are not infinite, optimization without thinking about resources sizes can hurt
performance.

 “To measure is to know”

 “If you can not measure it, you can not improve it”

 Lord Kelvin

Resources
● nvprof and nvvp:

○ https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profil
er/

○ https://devblogs.nvidia.com/parallelforall/cudacasts-episode-19-cuda-6-guided-performance-a
nalysis-visual-profiler/

● Latency limited kernels:
○ https://nvlabs.github.io/moderngpu/performance.html

● Shuffle instructions:
○ https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/
○ https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

● Launch_bounds qualifier:
○ https://nvlabs.github.io/moderngpu/performance.html#launchbounds

● Teaching kits:
○ https://developer.nvidia.com/teaching-kits

https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/
https://devblogs.nvidia.com/parallelforall/cudacasts-episode-19-cuda-6-guided-performance-analysis-visual-profiler/
https://devblogs.nvidia.com/parallelforall/cudacasts-episode-19-cuda-6-guided-performance-analysis-visual-profiler/
https://devblogs.nvidia.com/parallelforall/cudacasts-episode-19-cuda-6-guided-performance-analysis-visual-profiler/
https://nvlabs.github.io/moderngpu/performance.html
https://nvlabs.github.io/moderngpu/performance.html
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
https://nvlabs.github.io/moderngpu/performance.html#launchbounds
https://nvlabs.github.io/moderngpu/performance.html#launchbounds
https://developer.nvidia.com/teaching-kits
https://developer.nvidia.com/teaching-kits

End
pearson@illinois.edu
grcdgnz2@illinois.edu

▪ Common

▪ Latency-limited
▪ Memory-bandwidth-limited

▪ Less Common
▪ Compute-resource limited
▪ Not enough parallelism

GPU Performance Programming

nvvp: Coalesced and Uncoalesced Accesses

220 GB/s 113 GB/s

A[] =

t0 t1 t2 t3 ... t0 tn t2
n

t0 tn
+1

t2
n+

1

... ...

Coalesced Uncoalesced

Memory operations Control-flow operations Arithmetic operations

nvvp: Coalesced and Uncoalesced Accesses
Coalesced Uncoalesced

nvvp: “The performance of the kernel is most likely being limited by
the memory system”

nvvp: Coalesced and Uncoalesced Accesses

Coalesced Uncoalesced

Coalesced (GB/s) Uncoalesced (GB/s)

L1 Cache Writes 184.621 277.179

Device Memory Reads 0.009 26.293 (?)

Device Memory Writes 220.102 113.181

Device Memory Total 220.111 139.474

nvvp: Coalesced and Uncoalesced Accesses

nvvp: Coalesced and Uncoalesced Accesses

63: const int i = blockDim.x * blockIdx.x + threadIdx.x;
64: const int j = blockDim.y * blockIdx.y + threadIdx.y;
65: if (j < SIZE_X && i < SIZE_Y) {
66: dst[i * SIZE_X + j] = val; // row-major
67: }

