GPU Performance Nuggets Simon Garcia de Gonzalo & Carl Pearson

PhD Students, IMPACT Research Group Advised by Professor Wen-mei Hwu Jun. 15, 2016

grcdgnz2@illinois.edu pearson@illinois.edu

GPU Performance Programming

GPU Performance questions from Blue Waters users 1) Can I speed up my code on an XK node with a CUDA implementation 2) Is my CUDA implementation "fast" / why isn't it faster?

These questions have answers, and you can answer them!

Outline of this talk:

 Introduce a pair of NVIDIA performance tools available on Blue Waters What the GPU memory hierarchy provides for your application Can memory hierarchy optimization go too far? A Blue Waters case study.

IIINOIS

nvprof: collect (or view) profiling data

```
aprun nvprof \
   -o timeline.nvp \
   ./my-cuda-app
```


Timeline of CUDA runtime calls, kernel execution times, etc. ~No run time overhead

```
aprun nvprof \
   --analysis-metrics \
   -o analysis.nvp \
     ./my-cuda-app
                                   analysis.nvprof
                                                 Detailed performance data for each 
                                                  kernel execution. Large run time 
                                                  overhead
```
INOIS

Aside: nvprof and MPI

nvvp

 (4)

K20X Peak Memory Bandwidth

(most) GPU kernels are limited by memory before compute

CUDA Compute Capability 3.5 Memory Model

Thread-Private Memory 48KB Shared Memory 6GB Global Memory

Shared Memory: Accelerate predictable repeated access to data.

Constant Memory:

High bandwidth access to read-only data

Global Memory:

Data used by GPU kernels must be here

ECE ILLINOIS

INQIS

Use the memory hierarchy to reduce the DRAM FLOPS/word ratio

ECE ILLINOIS

ILLINOIS

Different memories for different data

If most of your memory accesses match one of these patterns, good results are possible.

nvvp: Stencil Stall Reasons

Simple Shared / Constant Memory

Stall Reasons

ECE ILLINOIS

1 ILLINOIS

nvvp: Memory Bandwidth (stencil)

nvvp: Utilization (stencil)

LINOIS

ECE ILLINOIS

Utilization

Latency limited kernels

- Characterized by having both low compute utilization and low memory utilization
- Low GPU occupancy is the main factor in this type of limitation.
- Unlike latency oriented CPUs, GPUs need a large degree of ILP to hide instruction latency.
- Common issue for highly optimized kernels that overuse limited resources that lowers possible achievable occupancy.

LINOIS

Resources that limit occupancy

● The following table contain the resources that are most likely to cause low occupancy

 $\boxed{\mathbb{I}}$ I L L I N O I S

 \mathbf{B}

Case study: Reducing share memory

- 5.97KB of shared memory per block was being used
- Tesla K20X is configured to have 48KB of shared memory per SMX
- Each SMX was limited to simultaneously execute only 8 blocks (32 warps) out of the possible 16 block (64 warps) **Varying Shared**
- What to do:

```
// shared cudatype pot[THREADS PER BLOCK PART];
// shared cudatype idt2[THREADS PER BLOCK PART];
CudaVector3D acc:
cudatype pot;
cudatype idt2;
```
Shuffle instruction for reduction

sumx += shfl down(sumx, offset, NODES PER BLOCK PART); sumy += shfl down(sumy, offset, NODES PER BLOCK PART); sumz += shfl down(sumz, offset, NODES PER BLOCK PART); poten += shfl down(poten, offset, NODES PER BLOCK PART);

Some syncthreads() can be removed due to threads not having to wait for all threads to read or write to shared memory

ECE ILLINOIS

INQIS

Case study: Reducing share memory

By using less shared memory we lowered the memory utilization as expected but did not improve the compute utilization…. We are still Latency limited!

LLINOIS

Register usage could be the limiting resources.

Case study: Reducing registers usage

- 56 registers per thread was being used or 14336 registers per block
- Tesla K20X is configured to have up to 65536 registers per SMX
- Each SMX was limited to simultaneously execute only 4 blocks (32 warps) out of the possible 16 block (64 warps)
- No direct way of controlling register usage, but we can help the compiler to do a better job.
- What to do:

__launch_bounds__(**maxThreadsPerBlock**, minBlockPerMultiProc)

The compiler will derive the number of register it needs per threads to be able to handle minBlockPerMultiProc***maxThreadsPerBlock** per SMX.

NUM_REG LOCAL_MEM NUM_INSTRUCTIONS

INQIS

Case study: Reducing registers usage

Register usage decreased from 56 to 24 thus utility rose to approximately 70%

Further reducing register usage causes spilling onto global memory adversely affecting execution time!

LLINOIS

What does it all mean in terms of speedup

- Two kernels from ChaNGa, N-Body Cosmological application, (Prof. Thomas Quinn, University of Washington) :
	- particleGravityComputation
	- nodeGravityComputation
- Both kernels are non-trivial and highly optimized making use of shared memory.

LINOIS

- After described latency optimizations:
	- particleGravityComputation
		- Utilization improved from about 40% to 70%
		- 1.66x speedup
	- nodeGravityComputation
		- Utilization improved from about 30% to 60%
		- 2.11x speedup

Takeaways

- Writing a CUDA kernels is becoming easier, but getting good performance is not.
- Know the tools you have available. Profiling is key to performance
- Fitting your application to the GPU memory hierarchy is critical for performance
- Resources are not infinite, optimization without thinking about resources sizes can hurt performance.

"To measure is to know"

"If you can not measure it, you can not improve it"

Resources

- nvprof and nvvp:
	- [https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profil](https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/) [er/](https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/)
	- [https://devblogs.nvidia.com/parallelforall/cudacasts-episode-19-cuda-6-guided-performance-a](https://devblogs.nvidia.com/parallelforall/cudacasts-episode-19-cuda-6-guided-performance-analysis-visual-profiler/) [nalysis-visual-profiler/](https://devblogs.nvidia.com/parallelforall/cudacasts-episode-19-cuda-6-guided-performance-analysis-visual-profiler/)
- Latency limited kernels:
	- <https://nvlabs.github.io/moderngpu/performance.html>
- Shuffle instructions:
	- <https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/>
	- <https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/>
- Launch bounds qualifier:
	- <https://nvlabs.github.io/moderngpu/performance.html#launchbounds>
- Teaching kits:
	- <https://developer.nvidia.com/teaching-kits>

pearson@illinois.edu grcdgnz2@illinois.edu

GPU Performance Programming

- Common
	- Latency-limited
	- Memory-bandwidth-limited
- Less Common
	- Compute-resource limited
	- Not enough parallelism

nvvp: Coalesced and Uncoalesced Accesses

ECE ILLINOIS

ILLINOIS

nvvp: Coalesced and Uncoalesced Accesses

the memory system"

ECE ILLINOIS

INOIS

ECE ILLINOIS

1 ILLINOIS

nvvp: Coalesced and Uncoalesced Accesses

nvvp: Coalesced and Uncoalesced Accesses

6 Global Memory Alignment and Access Pattern

Memory bandwidth is used most efficiently when each global memory load and store has proper alignment and access pattern.

Optimization: Select each entry below to open the source code to a alobal load or store within the kernel with an inefficient alianment or access pattern. For each load or store improve the alianment and access pattern of the memory access.

▼ Line / File vector_write.cu - /mnt/a/u/sciteam/cpearson/cuda-test/vector-write

Global Store L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [16777216 L2 transactions for 524288 total executions] 66

```
63: const int i = blockDim.x * blockIdx.x + threadIdx.x;
64: const int j = blockDim.y * blockIdx.y + threadIdx.y;
65: if (j < SIZE_X && i < SIZE_Y) {
66: dst[i \star SIZE X + j] = val; // row-major
67: }
```


More...